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Linear Algebra lecture note 2 
 

Four fundamental subspaces 

 
 
https://www.youtube.com/watch?v=uQhTuRlWMxw 
 
Inverse of a matrix A: A-1  
Applying the matrix and its inverse in succession restore the original vector, so A-1A = I 

There is no inverse if det(A) = 0 

Av = x 
A-1Ax = A-1v 
x = A-1v 

 
1. Column space C(A) is all possible linear combinations of column vectors, zero vector is 
always in the column space. It is the span of the columns of the matrix. 
 
C(A) = span{v1, v2, … vn} = {x1v1 + x2v2 + … + xnvn | x1,x2, …, xn Î R, vi Î Rn} 
If v1 v2 … vn are linearly independent set, they are valid basis of column space 
 
Rank r = Dim(C(A)):  number of linearly independent column vectors, it equals to the 
dimensions in the output 
 

2. Null space N(A) = {x Î Rn | Ax = 0}, also termed ‘Kernel’, gives all of the possible solutions 
for the equation Ax = 0 
 
N(A) = N(rref(A)) 
 
Nullity = Dim(N(A)): Number of free variables in rref(A) 
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Column vectors of A are linearly independent ó N(A) = {0} 
Because x1v1 + x2v2 + … + xnvn = 0, x1,x2, …, xn = 0 
 

3. Row space R(A) or C(AT) is all possible linear combinations of row vectors, zero vector is 
always in the row space; equal to column space of AT 

 

4. Left null space N(AT) is the null space of AT 

 

 

The big picture of linear algebra 
 
MIT lecture by Prof. Gilbert Strang on the orthogonality and dimensionality of the four 
fundamental subspaces: 
https://www.youtube.com/watch?v=ggWYkes-n6E 
 
 
Let A be a matrix with m rows and n columns, then there are 4 fundamental subspaces: 
 

• Row space R(A) = C(AT), it contains all linear combinations of the rows of A, or 
columns of AT 

• Column space C(A), it contains all linear combinations of the columns of A 
• Null space N(A), it contains all solutions to the system Ax = 0 
• Left null space N(AT), it contains all solutions to the system ATy = 0 

 
• The null space N(A), is perpendicular to/orthogonal complement of its row space R(A) 
• The left null space N(AT), is perpendicular to/orthogonal complement of its column 

space C(A) 
 

• r = rank(A) = dim(C(A)) = dim(R(A)) 
• dim(N(A)) = n – r 
• dim(N(AT)) = m – r  
• rank(AT) + nullity(AT) = m 
• rank(A) + nullity(A) = n 
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Change of basis 
 
https://www.youtube.com/watch?v=P2LTAUO1TdA 
 
Let V be a vector space and let B = { v1, v2, … , vn } be a set of vectors in V.  
 
Recall that B forms a basis for V if the following two conditions hold:  

1. v1, v2, … , vn  are linearly independent 
2. B spans V 

 
If B = { v1, v2, … , vn } is a basis for V, then every v Î V can be expressed uniquely as a linear 
combination of v1, v2, … , vn: 
v = c1v1 + c2v2 + … + cnvn 
 
c1, c2, … cn are just the coordinates of v relative to basis B. If V has a dimension of n, then 
every set of n linearly independent vectors in V forms a basis for V.  
 
We have a nice coordinate representation of our vector v, which we can construct by projecting 
our vector onto each basis vector individually. Now, what happens if we don’t find the standard 
basis particularly convenient for our problem, and we would like to look at v from a different 
perspective?  
We have a choice as to what basis to use!  
 

 
 

Here we will focus on vectors in R2, although all of this generalizes to Rn. The standard basis 
in R2 is { !

" 	
"
!  } 

 
Let us specify other bases with reference to this rectangular coordinate system 
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Let B = {x, y} and B’ = {x’, y’} be two bases for R2. For a vector v Î V, given its coordinates 
[v]B in basis B, we would like to be able to express v in terms of its coordinates [v]B’ in basis 
B’, and vice versa. 
 
Suppose the basis vectors x’ and y’ for B’ have the following coordinates relative to the basis 
B: [x’]B = 𝑎𝑏      [y’]B = 𝑐𝑑      

The change of coordinate matrix from B’ to B: C = 𝑎 𝑐
𝑏 𝑑  , meaning 

x = ax’ + by’ 
y = cx’ + dy’ 
 
Matrix C governs the change of coordinates of v Î V: 

[v]B = C[v]B’ 

[v]B’ = C-1[v]B 

 

Suppose we know the coordinates [v]B’ in the new basis B’, and we can find the coordinate of 
[v]B in the old basis B. The underlying mapping remains the same when matrix M is used in 
the original basis and the matrix M’ is used in the new basis: 

M’ = C-1MC 
M = CM’C-1 

 
The big take away: there are arbitrary different bases we can use to represent Rn, so we can 
have different matrices to represent the same linear transformation under different coordinate 
systems! 
 

Exercise1: We have a vector d = 
8
−6
2

, with the change of basis matrix from standard 

coordinates: 
1 1
2 0
3 1

, find its new coordinates in the new basis. 

Hint: equivalent to solving a linear system of equations: 
1 1
2 0
3 1

𝑎
𝑏  =  

8
−6
2

 

a = -3, b = 11 
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Exercise2: Let us alternate R2 basis to B = { !

/ 	
/
! }, what is the representation of the 

transformation matrix M =  3 −2
2 −2  in the new basis?  

 

The change of basis matrix for B would be C = 1 2
2 1   

det(C) = -3 

C-1 = -1/3 1 −2
−2 1  

 

M’ = C-1MC = −1 0
0 2   It is a diagonal matrix! 

 
When we transfer to a new basis, all of a sudden the transformation matrix is much simpler: 
we are only taking scaling factors of the corresponding terms during matrix multiplication. 
This is a neat result! It is super easy to multiply, to invert, to calculate the determinant, etc. 
 
Linear algebra is the art of choosing the right basis! 
 
Later we will learn eigenvectors and eigenvalues, we will see that eigenvectors make for good 
bases vectors/coordinate systems.  
 
 

 

Eigenvectors and Eigenvalues 
 
https://www.youtube.com/watch?v=PFDu9oVAE-g 
 
In general, vectors will change direction as well as length when multiplied by a matrix. 
However, there will be vectors that might change length, but not direction. In other words, for 
these vectors, multiplication by a matrix is no different than multiplication by a simple scalar: 
Av = λv 
 
A therefore acts by stretching v (by a scalar factor of λ), but not changing its direction. We say 
that v is an eigenvector, and λ is the corresponding eigenvalue which determines how much v 
is shortened or lengthened by a linear transformation. 
 

Example: the shear transformation we saw last time, A = 1 1
0 1 , λ = 1 
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L.T. knocks off vectors from its original span, i.e. rotate them, but eigenvectors remain on their 
own span after transformation, the corresponding eigenvalue is the factor it gets stretched or 
squished after L.T. 
 
*Any vector in eigenvector direction is still an eigenvector with the same corresponding 
eigenvalue, though we usually consider eigenvectors as unit vectors 
 
Q: What does it mean when an eigenvalue is negative? 
The vector gets flipped after L.T., but stays on the same line it spans out 
 
 
Intuitive example: Consider spinning a globe, every location faces a new direction, except the 
north and south pole. 
 
3D rotation of a tea pot, if we can find an eigenvector who remains on its own span, what does 
it mean? We find the axis of rotation (green vector)! 

 
 

An example of calculating eigenvalues and eigenvectors of a 2x2 matrix 𝑎 𝑏
𝑐 𝑑  

 

Exercise: look for eigenvalues and eigenvectors of matrix: B = 1 2
4 3  

1. Left matrix multiplication, right scalar multiplication 
2. Rewrite the right hand side by some matrix multiplication: 
 
Av = (λI)v 
Av - (λI)v = 0  
(A – λI)v = 0 
 
We want a non-zero eigenvector, a product of a matrix with a non-zero vector equals to zero, 
the transformation therefore squishes the space into a lower dimension, corresponding to a 
determinant of zero: 
 
det(A – λI) = 0 
(a-λ)(d-λ) – bc = 0 
(3- λ)(1- λ) – 8 = 0 



 7 

λ1 = 5, λ2 = -1 
 

v1 = 0.51 , v2 = −11  

 

Eigenspace5 = span{ 0.51 }, Eigenspace-1 = span{ −11 } 

 
 
Eigenvectors and eigenvalues pop up in many areas such as:  
Image compression: using SVD to find eigenvectors of the covariance matrix, and project data 
onto the eigenvectors of the largest eigenvalues, thereby throwing away the small eigenvalues. 
 
Dimensionality reduction for machine learning and data analysis: using PCA to find the 
principal components that correspond to the largest eigenvalues of the covariance matrix. It 
allows us to understand where most of the variation in a data comes from.  
 
Carsen will lecture on PCA, SVD in details in the following week.  
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Related to linear regression week: 

Linear algebra view of least-squares regression 
 
The goal of regression is to fit a mathematical model, i.e. a linear equation, to a set of observed 
points. We believe there is an underlying relationship that maps a to b, in the form of b = ca + 
d. Here, c and d are the regression coefficients we are looking for.  
 
We can write the observed points as a simple linear system such as: 
b1 = ca1 + d  
b2 = ca2 + d  
b3 = ca3 + d  
 
We have a simple linear system and we only need to deal with vectors and matrices! 
Here is our linear system in the matrix form: Ax = b 
𝑎1 1
𝑎2 1
𝑎3 1

𝑐
𝑑  = 

𝑏1
𝑏2
𝑏3

 

 
What this is saying is that we hope the vector b lies in the column space of A, i.e. C(A). In 
other word, we wish to find a linear combination of the columns of A that gives us our vector 
b. 
But we know that most of the time b doesn’t fit our model perfectly, meaning that it is outside 
the column space of A. We cannot simply solve the equation Ax = b for vector x. 
 
The linear regression answer is that we intend to swap out for b for another vector that is very 
close to it but fits in our model. Specifically, we want to pick a vector p that is in the column 
space of A, but is also as close as possible to b.  
 
This is termed least squares approximation in linear algebra. We would like to find p, that could 
minimize the difference between observed b and the projected p. Here, p is the projection of b 
in C(A). 
 
Geometry makes it pretty clear what’s going on. We started with b, which doesn’t fit the model, 
and then switched to p, which gives a good approximation and has the virtue of sitting in C(A). 
p = Ax* 
 
Now solving the regression coefficients becomes solving for x*, which is the estimated 
regression coefficients c and d. 
 
x* = (ATA)-1ATb 
 


