
Appendix A

In Chapter 9, we discussed probabilistic models having discrete latent variables, such
as the mixture of Gaussians. We now explore models in which some, or all, of the
latent variables are continuous. An important motivation for such models is that
many data sets have the property that the data points all lie close to a manifold of
much lower dimensionality than that of the original data space. To see why this
might arise, consider an artificial data set constructed by taking one of the off-line
digits, represented by a 64 x 64 pixel grey-level image, and embedding it in a larger
image of size 100 x 100 by padding with pixels having the value zero (corresponding
to white pixels) in which the location and orientation of the digit is varied at random,
as illustrated in Figure 12.1. Each of the resulting images is represented by a point in
the 100 x 100 = 10, OOO-dimensional data space. However, across a data set of such
images, there are only three degrees offreedom of variability, corresponding to the
vertical and horizontal translations and the rotations. The data points will therefore
live on a subspace of the data space whose intrinsic dimensionality is three. Note

559
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Figure 12.1 A synthetic data sel obtained by taking one of the off-line digit images and creating multi­
ple copies in each of which the digit has undergone a random displacement and rotation
within some larger image field. The resulting images each have 100 )( 100 = 10.000
pixels.

that the manifold will be nonlinear because. for instance. if we translate the digit
past a particular pixel, that pixel value will go from zero (white) 10 one (black) and
back to zero again. which is clearly a nonlinear function of the digit position. In
this example. !.he lranslation and rotation parameters are latent variables because we
observe only the image vectors and are not told which values of the translation or
rotation variables were used to create them.

For real digit image data, there will be a funher degree of freedom arising from
scaling. Moreover there will be multiple addilional degrees of freedom associaled
wilh more complex deformations due to the variability in an individual's wriling
3S well as lhe differences in writing slyles between individuals. evenheless. the
number of such degrees of freedom will be small compared to the dimensionality of
Ihe data set.

AppendiX A Another example is provided by the oil flow data set. in which (for a given ge-
ometrical configuration of the gas, WOller, and oil phases) there are only two degrees
of freedom of variability corresponding to the fraction of oil in the pipe and the frac­
tion of water (the fraction of gas Ihen being determined). Ahhough the data space
comprises 12 measuremenlS, a data set of points will lie close to a Iwo-dimensional
manifold embedded within this space. In this case, the manifold comprises scveral
distinct segments corresponding to different flow regimes. each such segment being
a (noisy) continuous two-dimensional manifold. If our goal is data compression. or
density modelling, then there can be benefits in exploiling this manifold struclUre.

In praclice. the data points will not be confined precisely to a smooth low­
dimensional manifold, and we can interpret the departures of data points from the
manifold as ·noise'. This leads naturally to a generative view of such models in
which we first select a poinl within the manifold according to some latent variable
distribution and then generate an observed data point by :ldding noise, drawn from
some conditional distribution of the data varillbles given the latent varillbles.

Thc simplest continuous latent variable model assumes Gaussian distributions
for both thc latent and observed variables and makes use of a linear,Gaussian de-

SeCTion 8.1..J pendence of the observed variables on Ihe slate of the latent variables. This leads
to a probabilislic fonnulation of the well-known technique of principal component
analysis (PeA), as well as 10 a related model called factor analysis.

Section 12.1 In this chapter w will begin wilh a slandard, nonprobabilistic treatment of PeA.
and thcn we show how PeA arises naturally as the maximum likelihood solution 10
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Flgu,e12.2 P'if>cipal compooont a",,~" seeks" $pace
01 !owe, dimensionality. kt"(>WIl as !he P<lno>
pal subSpace "nd denoted I:Jy the magenta "1
line. SUCh Itlet the Grthogonet [jiojectiOh 01
!he data points ('ed doIsl onto tP'Ns~
"""'imizes the varia,..,., of !he proja<:ted points
(green doIs). An "It",nati"" ....finilion 01 PCA
is based on m..mizing the """,-<>I·squares
of !he projection errors. ind'cated by the bfi.>e
lines.

S'crio" 12.2 a panlcula, fonn of linear-Gau"ian latem "ariable model. This probabilistic refor­
mulation bring~ many ad\'imlag~s, su~h as tl>l: use I)f EM for parameter eslimalion,
rrinciple<J c~tensioos 10 Oli~turc, of PeA model" and Ba)'~sian formulat;ons that
allow tbe number of rrincipal com[>Oncnts to be detennined aUlOmatically from !be
data. Finally'. "c diSl;us< briefly ""'eral gencrali,ation, of the latent Yariable concept
that g<l be~ood tbe linear-Gaussian assumption including non·Gau"i"n I.tcnt yari­
abies .....hich lea'" to tbe fr.me....ork of indrl"'mJ.m compon.nl anal,-.;., as ....ell a,

S'di"" 12.4 models ha"ing a nonlinear rclationship bet ....een latent and oose",e<J ,'lUiable,.

____'c2=.~1. Principal Component Analysis

Principal compooem analy,;" or rcA.;s a technique tha! is "'idely u<ed for appli.
cations such as dimensionality .-eduction, lossy data comprc"ion, feature e>tracti"".
and data v;,ualizatiOll (Jolliffe, 2(02). It;s also kno.... " as tile Karoan.n·I..,;"" tran,·
f~.

lbcrc an: t....o commonly used definitions of PeA that giye rise to the >arne
algorithm. PeA can be defined as the unhog<lnal projtttion of the data O/1tO a lo....er
dimensionallincar space. kno....n as the pri/lcip.al $uh.•p.aa. soch that the \'ariance of
the projttted data i' ma~imi,e<J (1I",.lIing. 1933). Equi"alemly,;t can be defined as
tbe linear projection that minimi"'. the average projttlion cost. defined as t~ mean
squa.-ed distance !letween the data [>Oint< and tbeir p<ojtttioo, (Pearson, 19(1). The
l"J'"OC"s< of onhogonal projection i' illustraled in FiguTe 12.2. We con,ider each of
these definitions in tum.

12,1.1 Mllximllm variance lormulation

Con,ider a dala set <If obser"\lations {x,,} where" = 1..... S, and x" i, a
Euclidean variable "'ilh dimen,ionality D. Our goal is to project If>/:: data onto a
'pace ha"ing dimen,ionality M < D" hile Ill3Jli",i,illg the "ariallCe of the projttted
data. For the !noll..nl. we 'hall assume that tbe "alue of M is g;\·en. Latcr in this
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chapter, we shall consider techniques to determine an appropriate value of IV! from
the data.

To begin with, consider the projection onto a one-dimensional space (M = 1).
We can define the direction of this space using a D-dimensional vector Ul, which
for convenience (and without loss of generality) we shall choose to be a unit vector
so that ufUl = 1 (note that we are only interested in the direction defined by Ul,
not in the magnitude of Ul itself). Each data point X n is then projected onto a scalar
value ufX n . The mean of the projected data is ufx where x is the sample set mean
given by

(12.1)

and the variance of the projected data is given by

where S is the data covariance matrix defined by

1 N
S = - "(xn - x)(xn - x)TNLJ .

n=l

(12.2)

(12.3)

Appendix E

We now maximize the projected variance UfSUl with respect to Ul. Clearly, this has
to be a constrained maximization to prevent Ilulll ..... 00. The appropriate constraint
comes from the normalization condition ufUl = 1. To enforce this constraint,
we introduce a Lagrange multiplier that we shall denote by AI, and then make an
unconstrained maximization of

(12.4)

By setting the derivative with respect to Ul equal to zero, we see that this quantity
will have a stationary point when

(12.5)

which says that Ul must be an eigenvector of S. If we left-multiply by uf and make
use of ufUl = 1, we see that the variance is given by

(12.6)

and so the variance will be a maximum when we set Ul equal to the eigenvector
having the largest eigenvalue AI. This eigenvector is known as the first principal
component.

We can define additional principal components in an incremental fashion by
choosing each new direction to be that which maximizes the projected variance



Exercise 12.1

Section 12.2.2

Appendix C

12.1. Principal Component Analysis 563

amongst all possible directions orthogonal to those already considered. If we con­
sider the general case of an M -dimensional projection space, the optimal linear pro­
jection for which the variance of the projected data is maximized is now defined by
the M eigenvectors U 1, ... , U M of the data covariance matrix S corresponding to the
M largest eigenvalues >'1, ... ,AM. This is easily shown using proof by induction.

To summarize, principal component analysis involves evaluating the mean x
and the covariance matrix S of the data set and then finding the M eigenvectors of S
corresponding to the M largest eigenvalues. Algorithms for finding eigenvectors and
eigenvalues, as well as additional theorems related to eigenvector decomposition,
can be found in Golub and Van Loan (1996). Note that the computational cost of
computing the full eigenvector decomposition for a matrix of size D x Dis O(D3).
If we plan to project our data onto the first M principal components, then we only
need to find the first M eigenvalues and eigenvectors. This can be done with more
efficient techniques, such as the power method (Golub and Van Loan, 1996), that
scale like O(MD 2 ), or alternatively we can make use of the EM algorithm.

12.1.2 Minimum-error formulation

We now discuss an alternative formulation of peA based on projection error
minimization. To do this, we introduce a complete orthonormal set of D-dimensional
basis vectors {Ui} where i = 1, ... , D that satisfy

(12.7)

Because this basis is complete, each data point can be represented exactly by a linear
combination of the basis vectors

D

X n = Laniui

i=l

(12.8)

where the coefficients ani will be different for different data points. This simply
corresponds to a rotation of the coordinate system to a new system defined by the
{Ui}, and the original D components {Xnl' ... , XnD} are replaced by an equivalent
set {anl' ... ,anD}. Taking the inner product with Uj, and making use of the or­
thonormality property, we obtain anj = x;Uj, and so without loss of generality we
can write

D

X n = L (X~Ui) Ui·
i=l

(12.9)

(12.10)

Our goal, however, is to approximate this data point using a representation in­
volving a restricted number M < D of variables corresponding to a projection onto
a lower-dimensional subspace. The M -dimensional linear subspace can be repre­
sented, without loss of generality, by the first M of the basis vectors, and so we
approximate each data point X n by

M D

xn = L ZniUi + L biUi

i=l i=M+l
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where the {Zni} depend on the particular data point, whereas the {bd are constants
that are the same for all data points. We are free to choose the {Ui}, the {Zni}, and
the {bd so as to minimize the distortion introduced by the reduction in dimensional­
ity. As our distortion measure, we shall use the squared distance between the original
data point X n and its approximation Xn , averaged over the data set, so that our goal
is to minimize

N

J = ~ L Ilxn - xn 11 2
.

n=l

(12.11)

Consider first of all the minimization with respect to the quantities {Zni}. Sub­
stituting for Xn , setting the derivative with respect to Znj to zero, and making use of
the orthonormality conditions, we obtain

(12.12)

where j = 1, ... ,M. Similarly, setting the derivative of J with respect to bi to zero,
and again making use of the orthonormality relations, gives

b -T
j = X Uj (12.13)

where j = M +1, ... ,D. Ifwe substitute for Zni and bi , and make use of the general
expansion (12.9), we obtain

D

X n - X n = L {(X n - x)Tud Ui
i=M+l

(12.14)

from which we see that the displacement vector from X n to xn lies in the space
orthogonal to the principal subspace, because it is a linear combination of {ud for
i = M + 1, ... , D, as illustrated in Figure 12.2. This is to be expected because the
projected points xn must lie within the principal subspace, but we can move them
freely within that subspace, and so the minimum error is given by the orthogonal
projection.

We therefore obtain an expression for the distortion measure J as a function
purely of the {ud in the form

1 ~ ~ (T _T)2 D T
J = N L L X n Ui - X Ui = L U i SUi.

n=l i=M+l i=M+l

(12.15)

There remains the task of minimizing J with respect to the {Ui}, which must
be a constrained minimization otherwise we will obtain the vacuous result Ui = O.
The constraints arise from the orthonormality conditions and, as we shall see, the
solution will be expressed in terms of the eigenvector expansion of the covariance
matrix. Before considering a formal solution, let us try to obtain some intuition about
the result by considering the case of a two-dimensional data space D = 2 and a one­
dimensional principal subspace M = 1. We have to choose a direction U2 so as to
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minimize J = UISU2' subject to the normalization constraint uI U2 = 1. Using a
Lagrange multiplier A2 to enforce the constraint, we consider the minimization of

(12.16)

(12.18)

Exercise 12.2

Appendix A

Setting the derivative with respect to U2 to zero, we obtain SU2 = A2U2 so that U2

is an eigenvector of S with eigenvalue A2. Thus any eigenvector will define a sta­
tionary point of the distortion measure. To find the value of J at the minimum, we
back-substitute the solution for U2 into the distortion measure to give J = A2. We
therefore obtain the minimum value of J by choosing U2 to be the eigenvector corre­
sponding to the smaller of the two eigenvalues. Thus we should choose the principal
subspace to be aligned with the eigenvector having the larger eigenvalue. This result
accords with our intuition that, in order to minimize the average squared projection
distance, we should choose the principal component subspace to pass through the
mean of the data points and to be aligned with the directions of maximum variance.
For the case when the eigenvalues are equal, any choice of principal direction will
give rise to the same value of J.

The general solution to the minimization of J for arbitrary D and arbitrary M <
D is obtained by choosing the {Ui} to be eigenvectors of the covariance matrix given
by

SUi = AiUi (12.17)

where i = 1, ... ,D, and as usual the eigenvectors {Ui} are chosen to be orthonor­
mal. The corresponding value of the distortion measure is then given by

D

J= L Ai

i=M+l

which is simply the sum of the eigenvalues of those eigenvectors that are orthogonal
to the principal subspace. We therefore obtain the minimum value of J by selecting
these eigenvectors to be those having the D - M smallest eigenvalues, and hence
the eigenvectors defining the principal subspace are those corresponding to the M
largest eigenvalues.

Although we have considered M < D, the PCA analysis still holds if M =

D, in which case there is no dimensionality reduction but simply a rotation of the
coordinate axes to align with principal components.

Finally, it is worth noting that there exists a closely related linear dimensionality
reduction technique called canonical correlation analysis, or CCA (Hotelling, 1936;
Bach and Jordan, 2002). Whereas PCA works with a single random variable, CCA
considers two (or more) variables and tries to find a corresponding pair of linear
subspaces that have high cross-correlation, so that each component within one of the
subspaces is correlated with a single component from the other subspace. Its solution
can be expressed in terms of a generalized eigenvector problem.

12.1.3 Applications of peA
We can illustrate the use of PCA for data compression by considering the off­

line digits data set. Because each eigenvector of the covariance matrix is a vector
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Figure 12.3 The mean ~'" x aklog with !he II"'t lou' PCA e;gerrvecl<)rll Ul,. .. '" lor the 011-.....
cligits data set. t<>getl'ler with !he correspondi~~.

;n the OIigi",,1 D-<limensional space. we can represent tho eigenw:cto<s as imago< of
tho same silO as ,1>0 data poi",,_ 11,. first Ih'e .ig.n,'occOfS. along wich tl>o corre­
sponding .igen,'slue,. are <IIo"'n in Figure 12,3, A plO! ofll>o complete spect"'m uf
oigo",·alue,. sone<! into decreasing order. is shown in Figure 12.4{ai. The di'tortion
measure J aSSQCiated wilh choo<ing a particular value of M is gi.'en by tho sum
of the eig.n",lues from M + I up to 0 and is ptO!ted for different ,'aluo< of .\1 in
Figure 12,4(b).

If "'e <utlslitut. (12, 12) and (12.13) into (12.10). we can write the I'CA appro~­

imation to a data "eel'" x~ i" the fonn

M "
'- ~ L{x~",)u,+ I: (xl'u,)u, (12.19).-. ._M+l

M

- x+L(X~U,-XTU,)U; (12.20)

• ,

, to' , 10',, ,
" ,,

"-,
"" ", ~ ~ ; 0 ", ~ ~ ",., ,.,

FIIIUre 12,4 (a) PIol at !he eJoI;nv.loo .".,etrum lor the off·1ine digits data set (b) P10t 01 !he sum at the
<:liscarded ."".Ioos, which "'l'fesoots!he s.um-ol·SQ"",es distortlon J i<*~ by projecti<Xl the data onto
a p<incipal componenl slll>spaee '" dimensionalitv M.
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FIIIUr. 1:1:.5 An ",>gi",,1 ~mpIe Irom lI>e 011·_ digils data ...ttOll"1her with its PeA re<:onstnxlions
oblair...:! by 'e1aio"li!Xl ,If j)<incipal~n1S 10< various val,," 01 ,If. As ,II increason
!tie re<:onst,uctiOfI~s more ao::urate and woukl~ portee! when .-If K D ~

28 x 28 ~ ."-1.

where we ha"e made moe of the relation

"x = L (x'",) u;,-, (12.21)

AI''''''''/;'\' A

Seer/on 9.1

which follow. from the completene" of the {u, I, Thi. represent. a contpre"ioo
"f the data >ct. Ilttau>e for each data poim we ha,.. repla«d the V·dimensiooal
"o<:lor x" Wilh an ,I[.din>en,ional "o<:tor having componem, (x~ '" _ X'",). 11Ie
'mailer the "alue of M. the greater the degree of comp.-e",ion. Example. of PeA
,""on't""tioos of data points for the digits data set are shown in Figure 12.5

Anolher application of priocipal compcmenl analy,i. i' to data pre-processing.
In thi' case, lhe goal is nO! dimensionality redUC1ion but rather the tmn,formmion of
a data sel in or<k' to standa'lli'.e eenain of ilS pmpenies. This can be in'portanl in
allowing .ubsequent pallem ,""ognition algorithm. 10 be applied successfully 10 the
data >ct. Typically. il is done wilen the original "ariable. are mea,ured in "arioos dif.
ferent unil' or !la"e significantly difTerent ,'ariabilil}'. For instance in the Old Faithful
data sel. the time betv.-een eruption. i. typicany an order of magni1Ude greater than
lhe dUrali"" of.n erupt;,,". When W'e applied the ".nlCans algorill"" 10 thi< data
set, ".-e first made a separ.te linear re-sealing of the individual "anable' socb thm
each "ariable had zero mean and unit "ariance. llUs is known as slllNlardiv·.,g the
dota. and the cO\'anance matrix for lhe 'lando,di/,ed dala has components

(12,22)

where <1, is the ,'anaoce of :c,. This i< known as the (",,,el,,,;,,,, matri.' of the original
dota and ha' the propeny thai if t""o rompooent, X; and x, of the data are perfee1ly
correl.ted. then Ai _ I.•nd if they a.-e uocorrelated. then Ai _ O.

11",,'1""', using PeA we can make a It>Of'e subst.mial nonnalizat;oo of the data
to gi\'C it zero mean and unit co'·ariance. so that different "anables become derorre­
late<l To do this. we first ""rile the ei8Cn"cclor equation (12, 17) in the form

su= UL (12.23)
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Figure 12.6 Illustration of the effects of linear pre-processing applied to the Old Faithful data set. The plot on
the left shows the original data. The centre plot shows the result of standardizing the individual variables to zero
mean and unit variance. Also shown are the principal axes of this normalized data set, plotted over the range
±A~/2. The plot on the right shows the result of whitening of the data to give it zero mean and unit covariance.

where L is a D x D diagonal matrix with elements Ai, and U is a D x D orthog­
onal matrix with columns given by Ui. Then we define, for each data point X n , a
transformed value given by

(12.24)

where x is the sample mean defined by (12.1). Clearly, the set {Yn} has zero mean,
and its covariance is given by the identity matrix because

N

1~ L L -1/2UT(Xn - x)(xn - x)TUL-1/2
n=l

L~1/2UTSUL -1/2 = L-1/2LL-1/2 = I. (12.25)

Appendix A

Appendix A

This operation is known as whitening or sphereing the data and is illustrated for the
Old Faithful data set in Figure 12.6.

It is interesting to compare PCA with the Fisher linear discriminant which was
discussed in Section 4.1.4. Both methods can be viewed as techniques for linear
dimensionality reduction. However, PCA is unsupervised and depends only on the
values X n whereas Fisher linear discriminant also uses class-label information. This
difference is highlighted by the example in Figure 12.7.

Another common application of principal component analysis is to data visual­
ization. Here each data point is projected onto a two-dimensional (M = 2) principal
subspace, so that a data point X n is plotted at Cartesian coordinates given by x'J. U1

and x'J. U2, where Ul and U2 are the eigenvectors corresponding to the largest and
second largest eigenvalues. An example of such a plot, for the oil flow data set, is
shown in Figure 12.8.
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A comparison 01 pro:ipal compo­
Mnt analysis ....111 Fisha(s linaar
discriminant 101 """", <*man""'"
ality r&duclion. Here too data in
two dimansions, belonging to two
classes sIIOWI1 in red and blue. is
to be PfOI"Cled onto a s.ingle di·
mension. PCA c/>xlsas the direc·
tion 01 maximum varia""e. sIIOWI1
try tha ma9""ta Co""'. wt11ch leads
to strong class overlap. whereas
!he Fisl>ef IiMar diSCfOrnillant takes
accoun1 <:A too class labels and
leads to a projection onto the g<ean
CUM! giving much t>etler class
separation

Fig"", 12.7

Fig"", 12.8 Visualilatlon 01 !he oill'low <lata lIet obtained
try projoecting the <lata onto the lirst two prin.
cipal compone<1ts. The <ed, blue, and 9r&en
points corre-spond to !he 'IamiNI(, 't>omo-
genoous', and '8nnula~ flow oonligurations
",specriveIy.

12.1.4 peA for high-dimensional data

In some application. of pliTlCipal component analysis. the number of data points
is smaller than t!>c dimensionality of troe data 'pace. FOI" example. ",e might want to
apply PeA to a data <el of a few hundred images, each of ,,'hich rorrespoOOs to a
"eetor in a 'pace of poIentially .....ml million dimensiOlls (COITesponding tn thfl'e
enlour "alues for each of the pi.",ls in troe image), NOIe that in a D-<limen,ional space
a set of jY points. ",'here N < D. defines a linear subspa::e ",hose dimensi"nality
is at ""'st N - 1, and SO there is linle point in applying PeA for ,'alue< of M
thaI"'" greater than N - I, Indeed, if "'e pelf"",, PeA we will find that at least
D - N + I of the eigen".lues art lero. eorrespnnding tQ eigenvectors aloog ",hose
direclioos the data <el has 10m varianee. Funhem>ore. typical algOl"ithm, for finding
the eigen,'eet"" ofa D x D matrix ha"e a computatiooal eosl thm scales like O(D~ J.
aOO so for appliealions such as the image e,ample. a direc' application of PeA will
be computatiooally infe,,-sibJe.

W. can resoh'e this problem as foIl",",'" Fir;l. let us define X to be the (N " DJ·
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dimensional centred data matrix, whose nth row is given by (xn - X)T. The covari­
ance matrix (12.3) can then be written as S = N- 1XTX, and the corresponding
eigenvector equation becomes

1 T
-X XUi = AiUiN .

Now pre-multiply both sides by X to give

1 T
NXX (XUi) = Ai(XUi)'

If we now define Vi = XUi, we obtain

1 T
-XX Vi = AiVi
N

(12.26)

(12.27)

(12.28)

(12.30)

which is an eigenvector equation for the N x N matrix N- 1XXT . We see that this
has the same N -1 eigenvalues as the original covariance matrix (which itself has an
additional D - N + 1 eigenvalues of value zero). Thus we can solve the eigenvector
problem in spaces of lower dimensionality with computational cost O(N3 ) instead
of O(D3 ). In order to determine the eigenvectors, we multiply both sides of (12.28)
by X T to give

(
1 T) T TNX X (X Vi) = Ai(X Vi) (12.29)

from which we see that (XTVi) is an eigenvector of S with eigenvalue Ai. Note,
however, that these eigenvectors need not be normalized. To determine the appropri­
ate normalization, we re-scale Ui ex: X TVi by a constant such that Ilui II = 1, which,
assuming Vi has been normalized to unit length, gives

1 T
Ui = ( NAi)1/2 X Vi·

In summary, to apply this approach we first evaluate XXT and then find its eigen­
vectors and eigenvalues and then compute the eigenvectors in the original data space
using (12.30).

12.2. Probabilistic peA

The formulation of PCA discussed in the previous section was based on a linear
projection of the data onto a subspace of lower dimensionality than the original data
space. We now show that PCA can also be expressed as the maximum likelihood
solution of a probabilistic latent variable model. This reformulation of PCA, known
as probabilistic peA, brings several advantages compared with conventional PCA:

• Probabilistic PCA represents a constrained form of the Gaussian distribution
in which the number of free parameters can be restricted while still allowing
the model to capture the dominant correlations in a data set.
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• We can derive an EM algorithm for PCA that is computationally efficient in
situations where only a few leading eigenvectors are required and that avoids
having to evaluate the data covariance matrix as an intermediate step.

• The combination of a probabilistic model and EM allows us to deal with miss­
ing values in the data set.

• Mixtures of probabilistic PCA models can be formulated in a principled way
and trained using the EM algorithm.

• Probabilistic PCA forms the basis for a Bayesian treatment of PCA in which
the dimensionality of the principal subspace can be found automatically from
the data.

• The existence of a likelihood function allows direct comparison with other
probabilistic density models. By contrast, conventional PCA will assign a low
reconstruction cost to data points that are close to the principal subspace even
if they lie arbitrarily far from the training data.

• Probabilistic PCA can be used to model class-conditional densities and hence
be applied to classification problems.

• The probabilistic PCA model can be run generatively to provide samples from
the distribution.

This formulation of PCA as a probabilistic model was proposed independently by
Tipping and Bishop (1997, 1999b) and by Roweis (1998). As we shall see later, it is
closely related to factor analysis (Basilevsky, 1994).

Probabilistic PCA is a simple example of the linear-Gaussian framework, in
which all of the marginal and conditional distributions are Gaussian. We can formu­
late probabilistic PCA by first introducing an explicit latent variable z corresponding
to the principal-component subspace. Next we define a Gaussian prior distribution
p(z) over the latent variable, together with a Gaussian conditional distribution p(xl z)
for the observed variable x conditioned on the value of the latent variable. Specifi­
cally, the prior distribution over z is given by a zero-mean unit-covariance Gaussian

p(z) = N(zIO, I). (12.31)

Similarly, the conditional distribution of the observed variable x, conditioned on the
value of the latent variable z, is again Gaussian, of the form

p(xlz) = N(xlWz + J-L, a 2I) (12.32)

Section 8.2.2

in which the mean of x is a general linear function of z governed by the D x M
matrix Wand the D-dimensional vector J-L. Note that this factorizes with respect to
the elements of x, in other words this is an example of the naive Bayes model. As
we shall see shortly, the columns of W span a linear subspace within the data space
that corresponds to the principal subspace. The other parameter in this model is the
scalar a 2 governing the variance of the conditional distribution. Note that there is no
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where the D x D covariance matrix C is defined by

C = WWT + 0-
21.

573

(12.36)

This result can also be derived more directly by noting that the predictive distribution
will be Gaussian and then evaluating its mean and covariance using (12.33). This
gives

IE [x]

cov[x]

IE[Wz + JL + E] = JL

IE [(Wz + E)(WZ + E)T]

IE [WZZTWT] + IE[EET] = WWT + 0-
21

(12.37)

(12.38)

where we have used the fact that z and E are independent random variables and hence
are uncorrelated.

Intuitively, we can think of the distribution p(x) as being defined by taking an
isotropic Gaussian 'spray can' and moving it across the principal subspace spraying
Gaussian ink with density determined by 0-

2 and weighted by the prior distribution.
The accumulated ink density gives rise to a 'pancake' shaped distribution represent­
ing the marginal density p(x).

The predictive distribution p(x) is governed by the parameters JL, W, and 0-
2

•

However, there is redundancy in this parameterization corresponding to rotations of
the latent space coordinates. To see this, consider a matrix W = WR where R is
an orthogonal matrix. Using the orthogonality property RRT = I, we see that the

quantity WWT that appears in the covariance matrix C takes the form

(12.39)

(12.41)

Exercise 12.8

and hence is independent of R. Thus there is a whole family of matrices W all of
which give rise to the same predictive distribution. This invariance can be understood
in terms of rotations within the latent space. We shall return to a discussion of the
number of independent parameters in this model later.

When we evaluate the predictive distribution, we require C- 1 , which involves
the inversion of a D x D matrix. The computation required to do this can be reduced
by making use of the matrix inversion identity (C.7) to give

C- 1 = 0-- 11 - 0--2WM- 1W T (12.40)

where the M x M matrix M is defined by

M = WTW + 0-
21.

Because we invert M rather than inverting C directly, the cost of evaluating C-1 is
reduced from O(D3 ) to O(M3 ).

As well as the predictive distribution p(x), we will also require the posterior
distributionp(zlx), which can again be written down directly using the result (2.116)
for linear-Gaussian models to give

(12.42)

Note that the posterior mean depends on x, whereas the posterior covariance is in­
dependent of x.
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Figure 12.10 The probabilistic peA model for a data set of N obser­
vations of x can be expressed as a directed graph in
which each observation X n is associated with a value
Zn of the latent variable.

..-+--w

N

12.2.1 Maximum likelihood peA
We next consider the determination of the model parameters using maximum

likelihood. Given a data set X = {xn } of observed data points, the probabilistic
peA model can be expressed as a directed graph, as shown in Figure 12.10. The
corresponding log likelihood function is given, from (12.35), by

N

Inp(XIJL, W,O' 2
) = L ln p(xn IW,JL,O'2 )

n=l

N
ND N 1"" T 1--2- ln(2n) - 2 ln Ie[ - 2L,..(xn - JL) c- (xn - JL). (12.43)

n=l

Setting the derivative of the log likelihood with respect to JL equal to zero gives the
expected result JL =xwhere x is the data mean defined by (12.1). Back-substituting
we can then write the log likelihood function in the form

N
Inp(XIW, JL, 0'2) = -2 {D In(2n) + In Ie[ + Tr (C-1S)} (12.44)

where S is the data covariance matrix defined by (12.3). Because the log likelihood
is a quadratic function of JL, this solution represents the unique maximum, as can be
confirmed by computing second derivatives.

Maximization with respect to W and 0'2 is more complex but nonetheless has
an exact closed-form solution. It was shown by Tipping and Bishop (1999b) that all
of the stationary points of the log likelihood function can be written as

(12.45)

where U M is a D x M matrix whose columns are given by any subset (of size M)
of the eigenvectors of the data covariance matrix S, the M x M diagonal matrix
L M has elements given by the corresponding eigenvalues ..\, and R is an arbitrary
M x M orthogonal matrix.

Furthermore, Tipping and Bishop (1999b) showed that the maximum of the like­
lihood function is obtained when the M eigenvectors are chosen to be those whose
eigenvalues are the M largest (all other solutions being saddle points). A similar re­
sult was conjectured independently by Roweis (1998), although no proof was given.



12.2. Probabilistic peA 575

Again, we shall assume that the eigenvectors have been arranged in order of decreas­
ing values of the corresponding eigenvalues, so that the M principal eigenvectors are
Ul,"" UM. In this case, the columns of W define the principal subspace of stan­
dard PCA. The corresponding maximum likelihood solution for (J'2 is then given by

1 D

(J'~L = D-M L Ai
i=M+l

(12.46)

Section 12.2.2

so that (J'~L is the average variance associated with the discarded dimensions.
Because R is orthogonal, it can be interpreted as a rotation matrix in the M x M

latent space. If we substitute the solution for W into the expression for C, and make
use of the orthogonality property RRT = I, we see that C is independent of R.
This simply says that the predictive density is unchanged by rotations in the latent
space as discussed earlier. For the particular case of R = I, we see that the columns
of W are the principal component eigenvectors scaled by the variance parameters
Ai - (J'2. The interpretation of these scaling factors is clear once we recognize that
for a convolution of independent Gaussian distributions (in this case the latent space
distribution and the noise model) the variances are additive. Thus the variance Ai
in the direction of an eigenvector Ui is composed of the sum of a contribution Ai ­
(J'2 from the projection of the unit-variance latent space distribution into data space
through the corresponding column of W, plus an isotropic contribution of variance
(J'2 which is added in all directions by the noise model.

It is worth taking a moment to study the form of the covariance matrix given
by (12.36). Consider the variance of the predictive distribution along some direction
specified by the unit vector v, where vTv = 1, which is given by vTCv. First
suppose that v is orthogonal to the principal subspace, in other words it is given by
some linear combination of the discarded eigenvectors. Then v TV = 0 and hence
v TCv = (J'2. Thus the model predicts a noise variance orthogonal to the principal
subspace, which, from (12.46), is just the average of the discarded eigenvalues. Now
suppose that v = Ui where Ui is one of the retained eigenvectors defining the prin­
cipal subspace. Then vTCv = (Ai - (J'2) + (J'2 = Ai. In other words, this model
correctly captures the variance of the data along the principal axes, and approximates
the variance in all remaining directions with a single average value (J'2.

One way to construct the maximum likelihood density model would simply be
to find the eigenvectors and eigenvalues of the data covariance matrix and then to
evaluate Wand (J'2 using the results given above. In this case, we would choose
R = I for convenience. However, if the maximum likelihood solution is found by
numerical optimization of the likelihood function, for instance using an algorithm
such as conjugate gradients (Fletcher, 1987; Nocedal and Wright, 1999; Bishop and
Nabney, 2008) or through the EM algorithm, then the resulting value of R is es­
sentially arbitrary. This implies that the columns of W need not be orthogonal. If
an orthogonal basis is required, the matrix W can be post-processed appropriately
(Golub and Van Loan, 1996). Alternatively, the EM algorithm can be modified in
such a way as to yield orthonormal principal directions, sorted in descending order
of the corresponding eigenvalues, directly (Ahn and Oh, 2003).
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The rotational invariance in latent space represents a form of statistical noniden­
tifiability, analogous to that encountered for mixture models in the case of discrete
latent variables. Here there is a continuum of parameters all of which lead to the
same predictive density, in contrast to the discrete nonidentifiability associated with
component re-labelling in the mixture setting.

If we consider the case of M = D, so that there is no reduction of dimension­
ality, then U M = U and L M = L. Making use of the orthogonality properties
UUT = I and RRT = I, we see that the covariance C of the marginal distribution
for x becomes

(12.47)

and so we obtain the standard maximum likelihood solution for an unconstrained
Gaussian distribution in which the covariance matrix is given by the sample covari­
ance.

Conventional PCA is generally formulated as a projection of points from the D­
dimensional data space onto an M -dimensional linear subspace. Probabilistic PCA,
however, is most naturally expressed as a mapping from the latent space into the data
space via (12.33). For applications such as visualization and data compression, we
can reverse this mapping using Bayes' theorem. Any point x in data space can then
be summarized by its posterior mean and covariance in latent space. From (12.42)
the mean is given by

where M is given by (12.41). This projects to a point in data space given by

WlE[zlx] + J-L.

(12.48)

(12.49)

Section 3.3.1 Note that this takes the same form as the equations for regularized linear regression
and is a consequence of maximizing the likelihood function for a linear Gaussian
model. Similarly, the posterior covariance is given from (12.42) by 0-2M- 1 and is
independent of x.

If we take the limit 0-
2

----t 0, then the posterior mean reduces to

(12.50)

Exercise 12.11

Exercise 12.12

Section 2.3

which represents an orthogonal projection of the data point onto the latent space,
and so we recover the standard PCA model. The posterior covariance in this limit is
zero, however, and the density becomes singular. For 0-

2 > 0, the latent projection
is shifted towards the origin, relative to the orthogonal projection.

Finally, we note that an important role for the probabilistic PCA model is in
defining a multivariate Gaussian distribution in which the number of degrees of free­
dom, in other words the number of independent parameters, can be controlled whilst
still allowing the model to capture the dominant correlations in the data. Recall
that a general Gaussian distribution has D(D + 1)/2 independent parameters in its
covariance matrix (plus another D parameters in its mean). Thus the number of
parameters scales quadratically with D and can become excessive in spaces of high
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dimensionality. If we restrict the covariance matrix to be diagonal, then it has only D
independent parameters, and so the number of parameters now grows linearly with
dimensionality. However, it now treats the variables as if they were independent and
hence can no longer express any correlations between them. Probabilistic PeA pro­
vides an elegant compromise in which the M most significant correlations can be
captured while still ensuring that the total number of parameters grows only linearly
with D. We can see this by evaluating the number of degrees of freedom in the
PPCA model as follows. The covariance matrix C depends on the parameters W,
which has size D x M, and a 2

, giving a total parameter count of DM+ 1. However,
we have seen that there is some redundancy in this parameterization associated with
rotations of the coordinate system in the latent space. The orthogonal matrix R that
expresses these rotations has size M x M. In the first column of this matrix there are
M - 1 independent parameters, because the column vector must be normalized to
unit length. In the second column there are M - 2 independent parameters, because
the column must be normalized and also must be orthogonal to the previous column,
and so on. Summing this arithmetic series, we see that R has a total of M(M -1)/2
independent parameters. Thus the number of degrees of freedom in the covariance
matrix C is given by

DM + 1 - M(M - 1)/2. (12.51)

Exercise 12.14

Section 12.2.4

Section 9.4

The number of independent parameters in this model therefore only grows linearly
with D, for fixed M. If we take M = D - 1, then we recover the standard result
for a full covariance Gaussian. In this case, the variance along D - 1 linearly in­
dependent directions is controlled by the columns of W, and the variance along the
remaining direction is given by a 2

. If M = 0, the model is equivalent to the isotropic
covariance case.

12.2.2 EM algorithm for peA
As we have seen, the probabilistic PCA model can be expressed in terms of a

marginalization over a continuous latent space z in which for each data point X n ,

there is a corresponding latent variable Zn. We can therefore make use of the EM
algorithm to find maximum likelihood estimates of the model parameters. This may
seem rather pointless because we have already obtained an exact closed-form so­
lution for the maximum likelihood parameter values. However, in spaces of high
dimensionality, there may be computational advantages in using an iterative EM
procedure rather than working directly with the sample covariance matrix. This EM
procedure can also be extended to the factor analysis model, for which there is no
closed-form solution. Finally, it allows missing data to be handled in a principled
way.

We can derive the EM algorithm for probabilistic PCA by following the general
framework for EM. Thus we write down the complete-data log likelihood and take
its expectation with respect to the posterior distribution of the latent distribution
evaluated using 'old' parameter values. Maximization of this expected complete­
data log likelihood then yields the 'new' parameter values. Because the data points
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are assumed independent, the complete-data log likelihood function takes the form

N

Inp (X, ZIJL, W, (J2) = L {lnp(xnlzn) + lnp(zn)}
n=l

(12.52)

where the nth row of the matrix Z is given by Zn. We already know that the exact
maximum likelihood solution for JL is given by the sample mean x defined by (12.1),
and it is convenient to substitute for JL at this stage. Making use of the expressions
(12.31) and (12.32) for the latent and conditional distributions, respectively, and tak­
ing the expectation with respect to the posterior distribution over the latent variables,
we obtain

Note that this depends on the posterior distribution only through the sufficient statis­
tics of the Gaussian. Thus in the E step, we use the old parameter values to evaluate

M-1WT(Xn - x)

(J2M- 1 + lE[zn]lE[zn]T

(12.54)

(12.55)

Exercise 12.15

which follow directly from the posterior distribution (12.42) together with the stan­
dard result lE[znz~] = cov[zn] + JE[zn]JE[zn]T. Here M is defined by (12.41).

In the M step, we maximize with respect to Wand (J2, keeping the posterior
statistics fixed. Maximization with respect to (T2 is straightforward. For the maxi­
mization with respect to W we make use of (C.24), and obtain the M-step equations

W new

2
(Jnew =

[t,exn -X)IlIZn]T] [t,Il[ZnZ~]]-'
1 N

ND L {llxn - xl1 2
- 2lE[zn]TW~ew(xn - x)

n=l

+Tr (JE[znzJ]W~ewW new )}.

(12.56)

(12.57)

The EM algorithm for probabilistic PCA proceeds by initializing the parameters
and then alternately computing the sufficient statistics of the latent space posterior
distribution using (12.54) and (12.55) in the E step and revising the parameter values
using (12.56) and (12.57) in the M step.

One of the benefits of the EM algorithm for PCA is computational efficiency
for large-scale applications (Roweis, 1998). Unlike conventional PCA based on an
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eigenvector decomposition of the sample covariance matrix, the EM approach is
iterative and so might appear to be less attractive. However, each cycle of the EM
algorithm can be computationally much more efficient than conventional PCA in
spaces of high dimensionality. To see this, we note that the eigendecomposition of
the covariance matrix requires O(D3 ) computation. Often we are interested only
in the first M eigenvectors and their corresponding eigenvalues, in which case we
can use algorithms that are 0 (MD 2 ). However, the evaluation of the covariance
matrix itself takes 0 (ND 2

) computations, where N is the number of data points.
Algorithms such as the snapshot method (Sirovich, 1987), which assume that the
eigenvectors are linear combinations of the data vectors, avoid direct evaluation of
the covariance matrix but are O(N3 ) and hence unsuited to large data sets. The EM
algorithm described here also does not construct the covariance matrix explicitly.
Instead, the most computationally demanding steps are those involving sums over
the data set that are 0 (ND M). For large D, and M « D, this can be a significant
saving compared to 0 (ND 2

) and can offset the iterative nature of the EM algorithm.
Note that this EM algorithm can be implemented in an on-line form in which

each D-dimensional data point is read in and processed and then discarded before
the next data point is considered. To see this, note that the quantities evaluated in
the E step (an M-dimensional vector and an M x M matrix) can be computed for
each data point separately, and in the M step we need to accumulate sums over data
points, which we can do incrementally. This approach can be advantageous if both
Nand D are large.

Because we now have a fully probabilistic model for PCA, we can deal with
missing data, provided that it is missing at random, by marginalizing over the dis­
tribution of the unobserved variables. Again these missing values can be treated
using the EM algorithm. We give an example of the use of this approach for data
visualization in Figure 12.11.

Another elegant feature ofthe EM approach is that we can take the limit a 2
----t 0,

corresponding to standard PCA, and still obtain a valid EM-like algorithm (Roweis,
1998). From (12.55), we see that the only quantity we need to compute in the Estep
is JE[zn]. Furthermore, the M step is simplifie~ because M = WTW. To emphasize
the simplicity of the algorithm, let us define X to be a matrix of size N x D whose
nth row is given by the vector X n - x and similarly define 0 to be a matrix of size
D x M whose nth row is given by the vector JE[zn]. The Estep (12.54) of the EM
algorithm for PCA then becomes

o = (W~dWold)-lW~dX

and the M step (12.56) takes the form

W new = XTOT(OOT)-l. (12.59)

Again these can be implemented in an on-line form. These equations have a simple
interpretation as follows. From our earlier discussion, we see that the E step involves
an orthogonal projection of the data points onto the current estimate for the principal
subspace. Correspondingly, the M step represents a re-estimation of the principal
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Fig".. 12.11 Probabilistic PCA visoo,zsbon 01 a portion 0I1he "" !low data setlo< Ihe !irsl 100 (lata »einls, The
left..,...nd plot oIIOWS Ihe I'O"leoo< mean proj9c1ions oIlhfI (lata poims on lhe principal subspace. The ,;gtrI·hi\nd
plot is obtained by firsl ran<lomly omitting 30% 0I1he variable .aloo. and lhen us>rlg EM 10 MndIe I"" mi......
values. Note I!IaI eac/1 data poinl1hen NoS allea., one missing mea.u,ement but lhoallhe plot i. ""ry ..mia, to
lhe ona obtained wit"""l miss.... valL>ll$

Ewrrise /2,/7
subspace to minimize !he squared reoonslruCtioo error in 'oIhich the proje<:tion, are
C.,N.

We ean gh'e a ,imple physical analogy for this EM algorithm. which is easily
visualized for D = 2 and M = 1. Coo,ider a collectioo nf data point' ,n tWI)
dimension', aod let tile u""'-dimensiunal principal subspace be represented by a <ohd
rod. Now atlaCh each data point to the nxI via a ,pring oo<:)"ing HooI;:e', law ("umJ
energy i, propol1ional 10 ,lie square of lile spring". length). In ll1e E 'tel', we keep
the nxI hed and allow the attachment point' tn ,Iide up and <I<,wn ll1e nxI '" a, to
minimize ll1e e",,'llY, This cau",. each attachment point (independently) 10 position
Itself at the orthogonal pmjeclion of the c~sponding data point onto the nxI. In
the M 'tel'. we keep the attachment poiOl' fil<ed and then release tile nxI and allow it
to m'>,'e 10 tile minimum energy posilion. 11Ie E and M 'teps are then repeated until
a ,uitable c""vergence cri.eri"" is ..,isfled. a. is illuSlrated in Figure 12.12.

12.2.3 Bayesian peA

S<J far in OIlr di",""ioo of PeA. we have ",'.nled Ihal tile '"Ine ,II for ,lie
dl,nen,ionalit)" of tile principal .ubspace is gi"en, In praclice. ".-e nlmt cOOose a
suilable ,..I"" according 10 the application. For ,isuali,a,ion. we ge""",ny choose
.\1 = 2. whereas for OIher application, the approrrialC choice for ,1/ ma)" be less
dea,. One appmao:h i. 10 pi", the eigen"alue 'peclrum for lhe data set. analog,•."
10 the example in Figure 12.4 for the off_line digits dala SCI, and look to see if lite
eige",,,I .... nmurally form two groups comprising a set of ,mall ,'alues separated by
a ,ign;flcant gap from a ",t of relativel)" large ,'alues, indicating a natural cholcc f<>r
AI, In practice. such a gap i, oflen ''''' seen
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Flgu.. 12.12 Synt"'elic <lata illustrating too EM algorithm !of PCA defined by (12.58) and (1259). (8) A data
set X with the data points shown in 1JI'e«l, t"ll"tM' W'i1!1l!>e t'IM pMdpal """"""",IS (shown as eigenveclor1
scaled by It>e squafll 'OOIS 04 the eigeJ'l\lllluel). (b) Initial configurat"'" 01 too principalsul>sl>a<:<t defined by W,
shown in md, tOO"lhfIr with the fK'(Ijeclions 01 the latll<11 points Z inlo too <lata space, giItoo by ZWT , shown in
cyan, (oj Alter""" M step, too laten! SI'B«l P>as been update<! wiIh Z r>el(l nxed. (d) Me' tt>e success.... E Slep,
It>e ""'-'eo 01 Z havu been up<!atll<:1.~ '" Ihogoooal r>rojecliQn$, with W h&k! fixed. (e) Aft.... tile se<:o<l<l M
S!flp. <') After l!Ie MC()<>;l E st"l'

S,uion I.J
Be<:au,", th~ pm/xlhi li>lic PeA modd has a well·defined likelillood f"flCtion, we

<wId employ cros,-,-.1idation to delermine the \"aJue of di"",nsiooa!ity by "'Iecting
tit<: large,t log likelihood t>I1 a '-alidation data set Such an opprooch. hov.·~\-er. can
become computationally ro<lly. p3rticularl)' if we CQnsid<:, • probabilistic miXlUre
of PeA modds (Tipping and Bishop. 1999a) in "hich we seek 10 <!etermi'" the
appropriate dimen,ionalily ",paraltly for toch componenl in lt1e mixm""

Gi'-en thai w. ha,-e a probabilislic formulalion of PeA, il s«ms natural 10 s«k
u Buye,ian approach 10 model seleclion. To do thi,. ,,"'e nee<! 10 marginalize 001
the model paramele" /'. \V. und ,,' wilh ""peel to appropriate prior distribution'.
This Can be done by u,ing a ,-ariation.l framework to .pproxim'le the allulylic.lly
intractable murginaliUOi;oo, (Bi,hop. 1mb). 1lIc marginal likelihood v.lues. given
by ttle ,'ari.,ionallower bour.d, cun lhen be c<>mpun:d for a r.nge of different '"Tue'
"f;\I ar.d Itie '"Iue giving Iht largest marginal likelihood ",Iecloo_

l1ere we consider. simpler approach introducoo by b.ased on the rddmu "p-
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Figure 12.13 Probabilistic graphical model for Bayesian peA in
which the distribution over the parameter matrix W
is governed by a vector a of hyperparameters.

w

N

proximation, which is appropriate when the number of data points is relatively large
and the corresponding posterior distribution is tightly peaked (Bishop, 1999a). It
involves a specific choice of prior over W that allows surplus dimensions in the
principal subspace to be pruned out of the model. This corresponds to an example of
automatic relevance determination, or ARD, discussed in Section 7.2.2. Specifically,
we define an independent Gaussian prior over each column of W, which represent
the vectors defining the principal subspace. Each such Gaussian has an independent
variance governed by a precision hyperparameter O:i so that

(12.60)

Section 7.2

where Wi is the i th column of W. The resulting model can be represented using the
directed graph shown in Figure 12.13.

The values for O:i will be found iteratively by maximizing the marginallikeli­
hood function in which W has been integrated out. As a result of this optimization,
some of the O:i may be driven to infinity, with the corresponding parameters vec­
tor Wi being driven to zero (the posterior distribution becomes a delta function at
the origin) giving a sparse solution. The effective dimensionality of the principal
subspace is then determined by the number of finite O:i values, and the correspond­
ing vectors Wi can be thought of as 'relevant' for modelling the data distribution.
In this way, the Bayesian approach is automatically making the trade-off between
improving the fit to the data, by using a larger number of vectors Wi with their cor­
responding eigenvalues Ai each tuned to the data, and reducing the complexity of
the model by suppressing some of the Wi vectors. The origins of this sparsity were
discussed earlier in the context of relevance vector machines.

The values of O:i are re-estimated during training by maximizing the log marginal
likelihood given by

p(Xla, J-L, 0'2) = Jp(XIW, J-L, O'2)p(Wla) dW (12.61)

where the log ofp(XIW, J-L, 0'2) is given by (12.43). Note that for simplicity we also
treat J-L and 0'2 as parameters to be estimated, rather than defining priors over these
parameters.



Section 4.4

Section 3.5.3

12.2. Probabilistic peA 583

Because this integration is intractable, we make use of the Laplace approxima­
tion. If we assume that the posterior distribution is sharply peaked, as will occur for
sufficiently large data sets, then the re-estimation equations obtained by maximizing
the marginal likelihood with respect to ai take the simple form

(12.62)

which follows from (3.98), noting that the dimensionality of Wi is D. These re­
estimations are interleaved with the EM algorithm updates for determining Wand
a 2

• The E-step equations are again given by (12.54) and (12.55). Similarly, the M­
step equation for a 2 is again given by (12.57). The only change is to the M-step
equation for W, which is modified to give

(12.63)

where A = diag(ai)' The value of I-" is given by the sample mean, as before.
If we choose M = D - 1 then, if all ai values are finite, the model represents

a full-covariance Gaussian, while if all the ai go to infinity the model is equivalent
to an isotropic Gaussian, and so the model can encompass all pennissible values for
the effective dimensionality of the principal subspace. It is also possible to consider
smaller values of M, which will save on computational cost but which will limit
the maximum dimensionality of the subspace. A comparison of the results of this
algorithm with standard probabilistic PCA is shown in Figure 12.14.

Bayesian PCA provides an opportunity to illustrate the Gibbs sampling algo­
rithm discussed in Section 11.3. Figure 12.15 shows an example of the samples
from the hyperparameters In ai for a data set in D = 4 dimensions in which the di­
mensionality of the latent space is M = 3 but in which the data set is generated from
a probabilistic PCA model having one direction of high variance, with the remaining
directions comprising low variance noise. This result shows clearly the presence of
three distinct modes in the posterior distribution. At each step of the iteration, one of
the hyperparameters has a small value and the remaining two have large values, so
that two of the three latent variables are suppressed. During the course of the Gibbs
sampling, the solution makes sharp transitions between the three modes.

The model described here involves a prior only over the matrix W. A fully
Bayesian treatment of PCA, including priors over 1-", a 2 , and n, and solved us­
ing variational methods, is described in Bishop (1999b). For a discussion of vari­
ous Bayesian approaches to detennining the appropriate dimensionality for a PCA
model, see Minka (2001c).

12.2.4 Factor analysis
Factor analysis is a linear-Gaussian latent variable model that is closely related

to probabilistic PCA. Its definition differs from that of probabilistic PCA only in that
the conditional distribution of the observed variable x given the latent variable z is
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Figure 12.14 'Hinloo' diagrams of the matrix W in which each element 01 the matrix is depicted as
a square (white lor positive and black lor negative values) whose area is proportional
to the magnitude of that element. The synthetic data sel comprises 300 data points in
D = 10 dimensions sampled from a Gaussian distribution having standard deviation 1.0
in 3 directions and standard deviation 0.5 in the remaining 7 directions for a data set in
D = 10 dimensions having AT = 3 directions with larger variance than the remaining 7
directions. The left-hand plol shows the result Irom maximum likelihood probabilistic PCA,
and the left·hand plot shows the corresponding resuft from Bayesian peA. We see how
the Bayesian model is able to discover the appropriate dimensionality by suppressing the
6 surplus degrees of freedom.

taken to have a diagonal rather than an isotropic covariance so that

p(xlz) = N(xlWz + 1'. \II) (12.64)

where ill is a D x D diagonal matrix. Note that the factor analysis model, in common
with probabilistic PCA. assumes that the observed variables Xl, ... ,Xo are indepen­
dent. given the latent variable z. In essence. the factor analysis model is explaining
the observed covariance structure of the data by representing the independent vari­
ance associated with each coordinate in the matrix 1J.' and capturing the covariance
between variables in the matrix W. In the factor analysis literature. the columns
of W. which capture the correlations between observed variables. are calledfaclOr
loadings. and the diagonal elements of 1J.'. which represent the independent noise
variances for each of the variables, are called llniqllenesses.

The origins of factor analysis are as old as those of PCA. and discussions of
factor analysis can be found in the books by Everitt (1984). Bartholomew (1987),
and Basilevsky (1994). Links between factor analysis and PCA were investigated
by Lilwley (1953) and Anderson (1963) who showed that at stationary points of
the likelihood function. for a faclOr analysis model with 1J.' = (121, the columns of
W are scaled eigenvectors of the sample covariance matrix. and (12 is the average
of the discarded eigenvalues. Later. Tipping and Bishop (1999b) showed that the
maximum of the log likelihood function occurs when the eigenvectors comprising
Ware chosen to be the principal eigenvectors.

Making use of (2.115). we see that the marginal distribution for the observed
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Exercise 12.22
to compute in O(D) steps), which is convenient because often M « D. Similarly,
the M-step equations take the form

w new [~(x"-XllllIZn]"] [~Ill[Znz~I]-'

diag {s-W.'w~ ~1ll[Zn](Xn _ xl"}

(12.69)

(12.70)

where the 'diag' operator sets all of the nondiagonal elements of a matrix to zero. A
Bayesian treatment of the factor analysis model can be obtained by a straightforward
application of the techniques discussed in this book.

Another difference between probabilistic PCA and factor analysis concerns their
Exercise 12.25 different behaviour under transformations of the data set. For PCA and probabilis­

tic PCA, if we rotate the coordinate system in data space, then we obtain exactly
the same fit to the data but with the W matrix transformed by the corresponding
rotation matrix. However, for factor analysis, the analogous property is that if we
make a component-wise re-scaling of the data vectors, then this is absorbed into a
corresponding re-scaling of the elements of \)i.

12.3. Kernel peA

In Chapter 6, we saw how the technique of kernel substitution allows us to take an
algorithm expressed in terms of scalar products of the form xT x' and generalize
that algorithm by replacing the scalar products with a nonlinear kernel. Here we
apply this technique of kernel substitution to principal component analysis, thereby
obtaining a nonlinear generalization called kernel peA (Scholkopf et al., 1998).

Consider a data set {xn } of observations, where n = 1, ... , N, in a space of
dimensionality D. In order to keep the notation uncluttered, we shall assume that
we have already subtracted the sample mean from each of the vectors X n , so that
Ln X n = O. The first step is to express conventional PCA in such a form that the
data vectors {xn } appear only in the form of the scalar products x~X m . Recall that
the principal components are defined by the eigenvectors Ui of the covariance matrix

SUi = AiUi (12.71)

where i = 1, ... ,D. Here the D x D sample covariance matrix S is defined by

(12.72)

and the eigenvectors are normalized such that uT Ui = 1.
Now consider a nonlinear transformation ¢(x) into an M -dimensional feature

space, so that each data point X n is thereby projected onto a point ¢(xn ). We can
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Substituting this expansion back into the eigenvector equation, we obtain

1 N N N

N L ¢(xn)¢(xn)T L aim¢(Xm ) = Ai L ain¢(Xn ),
n=l m=l n=l

(12.77)

The key step is now to express this in terms of the kernel function k(xn , xm ) =

¢(Xn)T¢(xm ), which we do by multiplying both sides by ¢(xZ)T to give

1 N m N

N Lk(XI'Xn ) L aimk(Xn,xm ) = Ai Laink(XI'Xn),
n=l m=l n=l

This can be written in matrix notation as

(12.78)

(12.79)

where ai is an N-dimensional column vector with elements ani for n = 1, ... ,N.
We can find solutions for ai by solving the following eigenvalue problem

(12.80)

Exercise 12.26

in which we have removed a factor of K from both sides of (12.79). Note that
the solutions of (12.79) and (12.80) differ only by eigenvectors of K having zero
eigenvalues that do not affect the principal components projection.

The normalization condition for the coefficients ai is obtained by requiring that
the eigenvectors in feature space be normalized. Using (12.76) and (12.80), we have

N N

1 = V;Vi = L L ainaim¢(xn)T¢(xm ) = a;K~ = AiNa;ai' (12.81)
n=l m=l

Having solved the eigenvector problem, the resulting principal component pro­
jections can then also be cast in terms of the kernel function so that, using (12.76),
the projection of a point x onto eigenvector i is given by

N N

Yi(X) = ¢(x)TVi = L ain¢(x)T¢(xn) = L aink(X, x n ) (12.82)
n=l n=l

and so again is expressed in terms of the kernel function.
In the original D-dimensional x space there are D orthogonal eigenvectors and

hence we can find at most D linear principal components. The dimensionality M
of the feature space, however, can be much larger than D (even infinite), and thus
we can find a number of nonlinear principal components that can exceed D. Note,
however, that the number of nonzero eigenvalues cannot exceed the number N of
data points, because (even if M > N) the covariance matrix in feature space has
rank at most equal to N. This is reflected in the fact that kernel PCA involves the
eigenvector expansion of the N x N matrix K.
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So far we have assumed that the projected data set given by ¢(xn ) has zero
mean, which in general will not be the case. We cannot simply compute and then
subtract off the mean, since we wish to avoid working directly in feature space, and
so again, we formulate the algorithm purely in-!erms of the kernel function. The
projected data points after centralizing, denoted ¢(xn ), are given by

and the corresponding elements of the Gram matrix are given by

K nm = ¢(xn)T¢(xm )

1 N
¢(xn)T¢(xm ) - N L ¢(xn)T¢(xZ)

Z=l
1 N 1 N N

- N L¢(XZ)T¢(Xm ) + N2 LL¢(Xj)T¢(xZ)
Z=l j=l Z=l

1 N

k(xn ,x m ) - N L k(xz, x m )

Z=l
1 N 1 N N

- N Lk(xn,xz) + N2 LLk(Xj,Xl)'
Z=l j=l 1=1

This can be expressed in matrix notation as

(12.83)

(12.84)

(12.85)

Exercise 12.27

where IN denotes the N x N matrix in which every element takes the value l/N.
~ ~

Thus we can evaluate K using only the kernel function and then use K to determine
the eigenvalues and eigenvectors. Note that the standard PCA algorithm is recovered
as a special case if we use a linear kernel k(x, x') = xTx/. Figure 12.17 shows an
example of kernel PCA applied to a synthetic data set (Scholkopf et al., 1998). Here
a 'Gaussian' kernel of the form

k(x, x') = exp(-llx - x/11 2 /0.1) (12.86)

is applied to a synthetic data set. The lines correspond to contours along which the
projection onto the corresponding principal component, defined by

is constant.

N

¢(X?Vi = L aink(X, x n )
n=l

(12.87)
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12.4. Nonlinear Latent Variable Models

Exercise 12.28

In this chapter, we have focussed on the simplest class of models having continuous
latent variables, namely those based on linear-Gaussian distributions. As well as
having great practical importance, these models are relatively easy to analyse and
to fit to data and can also be used as components in more complex models. Here
we consider briefly some generalizations of this framework to models that are either
nonlinear or non-Gaussian, or both.

In fact, the issues of nonlinearity and non-Gaussianity are related because a
general probability density can be obtained from a simple fixed reference density,
such as a Gaussian, by making a nonlinear change of variables. This idea forms the
basis of several practical latent variable models as we shall see shortly.

12.4.1 Independent component analysis
We begin by considering models in which the observed variables are related

linearly to the latent variables, but for which the latent distribution is non-Gaussian.
An important class of such models, known as independent component analysis, or
leA, arises when we consider a distribution over the latent variables that factorizes,
so that

M

p(z) = IIp(Zj).
j=l

(12.89)

To understand the role of such models, consider a situation in which two people
are talking at the same time, and we record their voices using two microphones.
If we ignore effects such as time delay and echoes, then the signals received by
the microphones at any point in time will be given by linear combinations of the
amplitudes of the two voices. The coefficients of this linear combination will be
constant, and if we can infer their values from sample data, then we can invert the
mixing process (assuming it is nonsingular) and thereby obtain two clean signals
each of which contains the voice of just one person. This is an example of a problem
called blind source separation in which 'blind' refers to the fact that we are given
only the mixed data, and neither the original sources nor the mixing coefficients are
observed (Cardoso, 1998).

This type of problem is sometimes addressed using the following approach
(MacKay, 2003) in which we ignore the temporal nature of the signals and treat the
successive samples as i.i.d. We consider a generative model in which there are two
latent variables corresponding to the unobserved speech signal amplitudes, and there
are two observed variables given by the signal values at the microphones. The latent
variables have a joint distribution that factorizes as above, and the observed variables
are given by a linear combination of the latent variables. There is no need to include
a noise distribution because the number of latent variables equals the number of ob­
served variables, and therefore the marginal distribution of the observed variables
will not in general be singular, so the observed variables are simply deterministic
linear combinations of the latent variables. Given a data set of observations, the
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Exercise 12.29

likelihood function for this model is a function of the coefficients in the linear com­
bination. The log likelihood can be maximized using gradient-based optimization
giving rise to a particular version of independent component analysis.

The success of this approach requires that the latent variables have non-Gaussian
distributions. To see this, recall that in probabilistic PCA (and in factor analysis) the
latent-space distribution is given by a zero-mean isotropic Gaussian. The model
therefore cannot distinguish between two different choices for the latent variables
where these differ simply by a rotation in latent space. This can be verified directly
by noting that the marginal density (12.35), and hence the likelihood function, is
unchanged if we make the transformation W -) WR where R is an orthogonal
matrix satisfying RRT = I, because the matrix C given by (12.36) is itself invariant.
Extending the model to allow more general Gaussian latent distributions does not
change this conclusion because, as we have seen, such a model is equivalent to the
zero-mean isotropic Gaussian latent variable model.

Another way to see why a Gaussian latent variable distribution in a linear model
is insufficient to find independent components is to note that the principal compo­
nents represent a rotation of the coordinate system in data space such as to diagonal­
ize the covariance matrix, so that the data distribution in the new coordinates is then
uncorrelated. Although zero correlation is a necessary condition for independence
it is not, however, sufficient. In practice, a common choice for the latent-variable
distribution is given by

1
p(z) = --,.-----,-

J 7fcosh(zj)

1
(12.90)

which has heavy tails compared to a Gaussian, reflecting the observation that many
real-world distributions also exhibit this property.

The original ICA model (Bell and Sejnowski, 1995) was based on the optimiza­
tion of an objective function defined by information maximization. One advantage
of a probabilistic latent variable formulation is that it helps to motivate and formu­
late generalizations of basic ICA. For instance, independent factor analysis (Attias,
1999a) considers a model in which the number of latent and observed variables can
differ, the observed variables are noisy, and the individual latent variables have flex­
ible distributions modelled by mixtures of Gaussians. The log likelihood for this
model is maximized using EM, and the reconstruction of the latent variables is ap­
proximated using a variational approach. Many other types of model have been
considered, and there is now a huge literature on ICA and its applications (Jutten
and Herault, 1991; Comon et at., 1991; Amari et at., 1996; Pearlmutter and Parra,
1997; Hyvarinen and Oja, 1997; Hinton et at., 2001; Miskin and MacKay, 2001;
Hojen-Sorensen et at., 2002; Choudrey and Roberts, 2003; Chan et at., 2003; Stone,
2004).

12.4.2 Autoassociative neural networks
In Chapter 5 we considered neural networks in the context of supervised learn­

ing, where the role of the network is to predict the output variables given values
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Figure 12.18 An autoassociative mUltilayer perceptron having
two layers of weights. Such a network is trained to
map input vectors onto themselves by minimiza­
tion ot a sum-ot-squares error. Even with non­
linear units in the hidden layer, such a network
is equivalent to linear principal component anal­
ysis. Links representing bias parameters have
been omitted for clarity.

inputs outputs

(12.91)

for the input variables. However, neural networks have also been applied to un­
supervised learning where they have been used for dimensionality reduction. This
is achieved by using a network having the same number of outputs as inputs, and
optimizing the weights so as to minimize some measure of the reconstruction error
between inputs and outputs with respect to a set of training data.

Consider first a multilayer perceptron of the form shown in Figure 12.18, hav­
ing D inputs, D output units and M hidden units, with M < D. The targets used
to train the network are simply the input vectors themselves, so that the network
is attempting to map each input vector onto itself. Such a network is said to form
an autoassociative mapping. Since the number of hidden units is smaller than the
number of inputs, a perfect reconstruction of all input vectors is not in general pos­
sible. We therefore determine the network parameters w by minimizing an error
function which captures the degree of mismatch between the input vectors and their
reconstructions. In particular, we shall choose a sum-of-squares error of the form

1 N
E(w) = "2 L Ily(xn , w) - xn 11 2

•

n=l

If the hidden units have linear activations functions, then it can be shown that the
error function has a unique global minimum, and that at this minimum the network
performs a projection onto the M -dimensional subspace which is spanned by the first
M principal components of the data (Bourlard and Kamp, 1988; Baldi and Hornik,
1989). Thus, the vectors of weights which lead into the hidden units in Figure 12.18
form a basis set which spans the principal subspace. Note, however, that these vec­
tors need not be orthogonal or normalized. This result is unsurprising, since both
principal component analysis and the neural network are using linear dimensionality
reduction and are minimizing the same sum-of-squares error function.

It might be thought that the limitations of a linear dimensionality reduction could
be overcome by using nonlinear (sigmoidal) activation functions for the hidden units
in the network in Figure 12.18. However, even with nonlinear hidden units, the min­
imum error solution is again given by the projection onto the principal component
subspace (Bourlard and Kamp, 1988). There is therefore no advantage in using two­
layer neural networks to perform dimensionality reduction. Standard techniques for
principal component analysis (based on singular value decomposition) are guaran­
teed to give the correct solution in finite time, and they also generate an ordered set
of eigenvalues with corresponding orthonormal eigenvectors.
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Figure 12.19 Addition of extra hidden lay­
ers of noolinear units gives an
auloassocialive network which
can perform a noolinear dimen­
siooality reduction.

inputs
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F, • F, •

outputs

x,

The situation is different, however. if additional hidden layers are pcrmillcd in
the network. Consider the four-layer autoassociativc network shown in Figure 12.19.
Again the output units are linear, and the M units in the second hidden layer can also
be linear. however, the first and third hidden layers have sigmoidal nonlinear activa­
tion functions. The network is again trained by minimization of the error function
(12.91). We can view this network as two successive functional mappings F] and
F 2 , as indicated in Figure 12.19. The first mapping F] projects the original D­
dimensional data onto an AI-dimensional subspace S defined by the activations of
the units in the second hidden layer. Because of the presence of the first hidden layer
of nonlinear units. this mapping is very general. and in particular is not restricted to
being linear. Similarly. the second half of the network defines an arbitrary functional
mapping from the M -dimensional space back into the original D-dimensional input
space. This has a simple geometrical interpretation. as indicated for the case D = 3
and M = 2 in Figure 12.20.

Such a network effectively perfonns a nonlinear principal component analysis.

X3 "F,

•

x, "

Figure 12.20 Geometrical interpretation of the mappings performed by the network in Figure 12.1 g for the case
of 0 = 3 inputs and AI = 2 units in the middle hidden layer. The function F, maps from an M-dimensional
space S into a D-dimensiooal space and therefore defines the way in which the space S is embedded within the
original x-space. Since the mapping F, can be r"I()(llinear, the embedding 01 S can be nonplanar, as indicated
in the figure. The mapping F. then defines a projectiorl of points in the original D-dimensional space into the
M -dimensional subspace S.
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It has the advantage of not being limited to linear transformations, although it con­
tains standard principal component analysis as a special case. However, training
the network now involves a nonlinear optimization problem, since the error function
(12.91) is no longer a quadratic function of the network parameters. Computation­
ally intensive nonlinear optimization techniques must be used, and there is the risk of
finding a suboptimal local minimum of the error function. Also, the dimensionality
of the subspace must be specified before training the network.

12.4.3 Modelling nonlinear manifolds
As we have already noted, many natural sources of data correspond to low­

dimensional, possibly noisy, nonlinear manifolds embedded within the higher di­
mensional observed data space. Capturing this property explicitly can lead to im­
proved density modelling compared with more general methods. Here we consider
briefly a range of techniques that attempt to do this.

One way to model the nonlinear structure is through a combination of linear
models, so that we make a piece-wise linear approximation to the manifold. This can
be obtained, for instance, by using a clustering technique such as K -means based on
Euclidean distance to partition the data set into local groups with standard PCA ap­
plied to each group. A better approach is to use the reconstruction error for cluster
assignment (Kambhatla and Leen, 1997; Hinton et al., 1997) as then a common cost
function is being optimized in each stage. However, these approaches still suffer
from limitations due to the absence of an overall density model. By using prob­
abilistic PCA it is straightforward to define a fully probabilistic model simply by
considering a mixture distribution in which the components are probabilistic PCA
models (Tipping and Bishop, 1999a). Such a model has both discrete latent vari­
ables, corresponding to the discrete mixture, as well as continuous latent variables,
and the likelihood function can be maximized using the EM algorithm. A fully
Bayesian treatment, based on variational inference (Bishop and Winn, 2000), allows
the number of components in the mixture, as well as the effective dimensionalities
of the individual models, to be inferred from the data. There are many variants of
this model in which parameters such as the W matrix or the noise variances are tied
across components in the mixture, or in which the isotropic noise distributions are
replaced by diagonal ones, giving rise to a mixture of factor analysers (Ghahramani
and Hinton, 1996a; Ghahramani and Beal, 2000). The mixture of probabilistic PCA
models can also be extended hierarchically to produce an interactive data visualiza­
tion algorithm (Bishop and Tipping, 1998).

An alternative to considering a mixture of linear models is to consider a single
nonlinear model. Recall that conventional PCA finds a linear subspace that passes
close to the data in a least-squares sense. This concept can be extended to one­
dimensional nonlinear surfaces in the form of principal curves (Hastie and Stuetzle,
1989). We can describe a curve in a D-dimensional data space using a vector-valued
function f ().), which is a vector each of whose elements is a function of the scalar )..
There are many possible ways to parameterize the curve, of which a natural choice
is the arc length along the curve. For any given point xin data space, we can find
the point on the curve that is closest in Euclidean distance. We denote this point by
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>.. = gf(X) because it depends on the particular curve f(>"). For a continuous data
density p(x), a principal curve is defined as one for which every point on the curve
is the mean of all those points in data space that project to it, so that

JE [Xlgf(X) = >..] = f(>"). (12.92)

For a given continuous density, there can be many principal curves. In practice, we
are interested in finite data sets, and we also wish to restrict attention to smooth
curves. Hastie and Stuetzle (1989) propose a two-stage iterative procedure for find­
ing such principal curves, somewhat reminiscent of the EM algorithm for PCA. The
curve is initialized using the first principal component, and then the algorithm alter­
nates between a data projection step and curve re-estimation step. In the projection
step, each data point is assigned to a value of >.. corresponding to the closest point
on the curve. Then in the re-estimation step, each point on the curve is given by
a weighted average of those points that project to nearby points on the curve, with
points closest on the curve given the greatest weight. In the case where the subspace
is constrained to be linear, the procedure converges to the first principal component
and is equivalent to the power method for finding the largest eigenvector of the co­
variance matrix. Principal curves can be generalized to multidimensional manifolds
called principal surfaces although these have found limited use due to the difficulty
of data smoothing in higher dimensions even for two-dimensional manifolds.

PCA is often used to project a data set onto a lower-dimensional space, for ex­
ample two dimensional, for the purposes of visualization. Another linear technique
with a similar aim is multidimensional scaling, or MDS (Cox and Cox, 2000). It finds
a low-dimensional projection of the data such as to preserve, as closely as possible,
the pairwise distances between data points, and involves finding the eigenvectors of
the distance matrix. In the case where the distances are Euclidean, it gives equivalent
results to PCA. The MDS concept can be extended to a wide variety of data types
specified in terms of a similarity matrix, giving nonmetric MDS.

Two other nonprobabilistic methods for dimensionality reduction and data vi­
sualization are worthy of mention. Locally linear embedding, or LLE (Roweis and
Saul, 2000) first computes the set of coefficients that best reconstructs each data
point from its neighbours. These coefficients are arranged to be invariant to rota­
tions, translations, and scalings of that data point and its neighbours, and hence they
characterize the local geometrical properties of the neighbourhood. LLE then maps
the high-dimensional data points down to a lower dimensional space while preserv­
ing these neighbourhood coefficients. If the local neighbourhood for a particular
data point can be considered linear, then the transformation can be achieved using
a combination of translation, rotation, and scaling, such as to preserve the angles
formed between the data points and their neighbours. Because the weights are in­
variant to these transformations, we expect the same weight values to reconstruct the
data points in the low-dimensional space as in the high-dimensional data space. In
spite of the nonlinearity, the optimization for LLE does not exhibit local minima.

In isometric feature mapping, or isomap (Tenenbaum et ai., 2000), the goal is
to project the data to a lower-dimensional space using MDS, but where the dissim­
ilarities are defined in terms of the geodesic distances measured along the mani-
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fold. For instance, if two points lie on a circle, then the geodesic is the arc-length
distance measured around the circumference of the circle not the straight line dis­
tance measured along the chord connecting them. The algorithm first defines the
neighbourhood for each data point, either by finding the K nearest neighbours or by
finding all points within a sphere of radius E. A graph is then constructed by link­
ing all neighbouring points and labelling them with their Euclidean distance. The
geodesic distance between any pair of points is then approximated by the sum of
the arc lengths along the shortest path connecting them (which itself is found using
standard algorithms). Finally, metric MDS is applied to the geodesic distance matrix
to find the low-dimensional projection.

Our focus in this chapter has been on models for which the observed vari­
ables are continuous. We can also consider models having continuous latent vari­
ables together with discrete observed variables, giving rise to latent trait models
(Bartholomew, 1987). In this case, the marginalization over the continuous latent
variables, even for a linear relationship between latent and observed variables, can­
not be performed analytically, and so more sophisticated techniques are required.
Tipping (1999) uses variational inference in a model with a two-dimensional latent
space, allowing a binary data set to be visualized analogously to the use of PCA to
visualize continuous data. Note that this model is the dual of the Bayesian logistic
regression problem discussed in Section 4.5. In the case of logistic regression we
have N observations of the feature vector <l>n which are parameterized by a single
parameter vector w, whereas in the latent space visualization model there is a single
latent space variable x (analogous to <1» and N copies of the latent variable W n . A
generalization of probabilistic latent variable models to general exponential family
distributions is described in Collins et al. (2002).

We have already noted that an arbitrary distribution can be formed by taking a
Gaussian random variable and transforming it through a suitable nonlinearity. This
is exploited in a general latent variable model called a density network (MacKay,
1995; MacKay and Gibbs, 1999) in which the nonlinear function is governed by a
multilayered neural network. If the network has enough hidden units, it can approx­
imate a given nonlinear function to any desired accuracy. The downside of having
such a flexible model is that the marginalization over the latent variables, required in
order to obtain the likelihood function, is no longer analytically tractable. Instead,
the likelihood is approximated using Monte Carlo techniques by drawing samples
from the Gaussian prior. The marginalization over the latent variables then becomes
a simple sum with one term for each sample. However, because a large number
of sample points may be required in order to give an accurate representation of the
marginal, this procedure can be computationally costly.

If we consider more restricted forms for the nonlinear function, and make an ap­
propriate choice of the latent variable distribution, then we can construct a latent vari­
able model that is both nonlinear and efficient to train. The generative topographic
mapping, or GTM (Bishop et aI., 1996; Bishop et aI., 1997a; Bishop et aI., 1998b)
uses a latent distribution that is defined by a finite regular grid of delta functions over
the (typically two-dimensional) latent space. Marginalization over the latent space
then simply involves summing over the contributions from each of the grid locations.
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GTM 1TlOd8I._lha sepamlion betwoon the groups of data points to be .....n """. ckl.arfy,
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The no"liotar mapping is gi,'en by a linear regression model thaI allow, for general
IIO/llinearily while being a linear fuoction of tile adapli'-e parameler<, NOIe thaI tilt
usual limitation of linear regression models arising from the en"", of dimen,iooalily
does 1101 arise in the Contr~1 of lhe GT~I si""'e the "\3nifold generall)' ha< t,,'o di"ltn·
sions irrespecti'-e of the dimensionality of the data space, A coo""!",,nce of Illese
11"0 cooices is that the likelihood funclion can be e~pressed analytically in dosed
form and can be optimilC<.! efficiently o,ing the EM algorithm_ The resolting GTM
model hIs a lwo-dimensional nonlinear manifold 10 tile dala sel. and by e"alualing
the posterior distrilJ",lion (Wer latent space for the data poi"", they can he projectt<J
back to the lalent 'JI'K'" for .'isualilalion purposes, Figure 12,21 sl"""s a comparison
of the oil data..,1 "isualired wilh lincar PeA and wilh lhe IIO/lhnear GT~I,

TIlt GTM can be seen as a probabilistic "'rsion of an earlier nlOd<l callM the '''If
org"nidng ""'p. or SOM (Kohonen. 1982: Kobonen. (995). which also represents
a Iwo-dimensiooal IIO/llincar manifoid as a regular array of disc"'le points. The
SOM i' somewhat remin;""'nt of the K·trlCan, algorithm in that data points are
a.,igr.ed to nearby ProlOl)'j>C '-eclon thaI are lhen subsc<juenlly updale<!. Initially.
lhe proIOI)'jl('S are distribuled at random, and during the training process they 'selr
organize' so as to aPl'ro~imalea smoolh manifold. Unlike K -mean'. how'e"e.. the
SOM is TIOI optimizing any well.ddine<! cost function (Erwin .. al.. 1992) making"
difficult to s." the parameters of the model and 10 assess con'-ergence. There i' also
no guarantee that the '",If-<>rganilalion' will take place .. this is depen""nl 00 the
choice of appropriate paranlttcr "aloC' f,,, any particular data sel.

By OOfItrast, GTM optimize, the log likelihood functioo, and the resolting model
define' a probabilily den,ity in dma ,pace, In faeL il corre,ponds to a con,m,incd
mi,ture of Gaussian, in which the component.' ,h.re a COnlnlOn ".riance.•nd the
mean, are con'trained to lie on a 'mooIh tw-o-diITlCn,iooal n1anifold. This proba-
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bilistic foundation also makes it very straightforward to define generalizations of
GTM (Bishop et al., 1998a) such as a Bayesian treatment, dealing with missing val-

Section 6.4 ues, a principled extension to discrete variables, the use of Gaussian processes to
define the manifold, or a hierarchical GTM model (Tino and Nabney, 2002).

Because the manifold in GTM is defined as a continuous surface, not just at the
prototype vectors as in the SOM, it is possible to compute the magnification factors
corresponding to the local expansions and compressions of the manifold needed to
fit the data set (Bishop et al., 1997b) as well as the directional curvatures of the
manifold (Tino et al., 2001). These can be visualized along with the projected data
and provide additional insight into the model.

Exercises
12.1 (* *) lIB In this exercise, we use proof by induction to show that the linear

projection onto an M -dimensional subspace that maximizes the variance of the pro­
jected data is defined by the M eigenvectors of the data covariance matrix S, given
by (12.3), corresponding to the M largest eigenvalues. In Section 12.1, this result
was proven for the case of M = 1. Now suppose the result holds for some general
value of M and show that it consequently holds for dimensionality M + 1. To do
this, first set the derivative of the variance of the projected data with respect to a
vector UM+1 defining the new direction in data space equal to zero. This should
be done subject to the constraints that UM+l be orthogonal to the existing vectors
U1,"" UM, and also that it be normalized to unit length. Use Lagrange multipli-

Appendix E ers to enforce these constraints. Then make use of the orthonormality properties of
the vectors U1,"" UM to show that the new vector UM+1 is an eigenvector of S.
Finally, show that the variance is maximized if the eigenvector is chosen to be the
one corresponding to eigenvector AM+1 where the eigenvalues have been ordered in
decreasing value.

12.2 (**) Show that the minimum value of the PCA distortion measure J given by
(12.15) with respect to the Ui, subject to the orthonormality constraints (12.7), is
obtained when the Ui are eigenvectors of the data covariance matrix S. To do this,
introduce a matrix H of Lagrange multipliers, one for each constraint, so that the
modified distortion measure, in matrix notation reads

] = Tr { UTSU}+ Tr { H(I - UTU) } (12.93)

where Uis a m~trix of dimensio~D x (D - M) whose columns are gi:::..en b~Ui.

Now minimize J with respect to U and show that the s~ution satisfies SU = UH.
Clearly, one possible solution is that the columns of U are eigenvectors of S, in
which case H is a diagonal matrix containing the corresponding eigenvalues. To
obtain the general solution, show that H can be assumed to be a symmetr~ ma~ix,

and by using its eigenvect£r expansion show that the general solution to SU =~UH
gives the same value for J as the specific solution in which the columns of U are



600 12. CONTINUOUS LATENT VARIABLES

the eigenvectors of S. Because these solutions are all equivalent, it is convenient to
choose the eigenvector solution.

12.3 (*) Verify that the eigenvectors defined by (12.30) are normalized to unit length,
assuming that the eigenvectors Vi have unit length.

12.4 (*) Imm Suppose we replace the zero-mean, unit-covariance latent space distri­
bution (12.31) in the probabilistic PCA model by a general Gaussian distribution of
the formN(zlm, ~). By redefining the parameters of the model, show that this leads
to an identical model for the marginal distribution p(x) over the observed variables
for any valid choice of m and ~.

12.5 (* *) Let x be a D-dimensional random variable having a Gaussian distribution
given by N(xIJL, ~), and consider the M-dimensional random variable given by
y = Ax + b where A is an M x D matrix. Show that y also has a Gaussian
distribution, and find expressions for its mean and covariance. Discuss the form of
this Gaussian distribution for M < D, for M = D, and for M > D.

12.6 (*) Imm Draw a directed probabilistic graph for the probabilistic PCA model
described in Section 12.2 in which the components of the observed variable x are
shown explicitly as separate nodes. Hence verify that the probabilistic PCA model
has the same independence structure as the naive Bayes model discussed in Sec­
tion 8.2.2.

12.7 (* *) By making use of the results (2.270) and (2.271) for the mean and covariance
of a general distribution, derive the result (12.35) for the marginal distribution p(x)
in the probabilistic PCA model.

12.8 (* *) Imm By making use of the result (2.116), show that the posterior distribution
p(zlx) for the probabilistic PCA model is given by (12.42).

12.9 (*) Verify that maximizing the log likelihood (12.43) for the probabilistic PCA
model with respect to the parameter JL gives the result JLML = x where x is the
mean of the data vectors.

12.10 (**) By evaluating the second derivatives of the log likelihood function (12.43) for
the probabilistic PCA model with respect to the parameter JL, show that the stationary
point JLML = x represents the unique maximum.

12.11 (* *) Imm Show that in the limit (Y2 -. 0, the posterior mean for the probabilistic
PCA model becomes an orthogonal projection onto the principal subspace, as in
conventional PCA.

12.12 (* *) For (Y2 > 0 show that the posterior mean in the probabilistic PCA model is
shifted towards the origin relative to the orthogonal projection.

12.13 (* *) Show that the optimal reconstruction of a data point under probabilistic PCA,
according to the least squares projection cost of conventional PCA, is given by

(12.94)
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12.14 (*) The number of independent parameters in the covariance matrix for the proba­
bilistic PCA model with an M -dimensional latent space and a D-dimensional data
space is given by (12.51). Verify that in the case of M = D - 1, the number of
independent parameters is the same as in a general covariance Gaussian, whereas for
M = °it is the same as for a Gaussian with an isotropic covariance.

12.15 (**) IIiI!I Derive the M-step equations (12.56) and (12.57) for the probabilistic
PCA model by maximization of the expected complete-data log likelihood function
given by (12.53).

12.16 (* * *) In Figure 12.11, we showed an application of probabilistic PCA to a data set
in which some of the data values were missing at random. Derive the EM algorithm
for maximizing the likelihood function for the probabilistic PCA model in this situ­
ation. Note that the {zn}, as well as the missing data values that are components of
the vectors {xn }, are now latent variables. Show that in the special case in which all
of the data values are observed, this reduces to the EM algorithm for probabilistic
PCA derived in Section 12.2.2.

12.17 (**) IIiI!I Let W be a D x M matrix whose columns define a linear subspace
of dimensionality M embedded within a data space of dimensionality D, and let J1
be a D-dimensional vector. Given a data set {xn } where n = 1, ... , N, we can
approximate the data points using a linear mapping from a set of M -dimensional
vectors {zn}, so that Xn is approximated by W Zn + J1. The associated sum-of­
squares reconstruction cost is given by

N

J = L Ilxn - J1- Wzn 11 2
.

n=l

(12.95)

First show that minimizing J with respect to J1leads to an analogous expression with
X n and Zn replaced by zero-mean variables X n - x and Zn - Z, respectively, where x
and Z denote sample means. Then show that minimizing J with respect to Zn, where
W is kept fixed, gives rise to the PCA Estep (12.58), and that minimizing J with
respect to W, where {zn} is kept fixed, gives rise to the PCA M step (12.59).

12.18 (*) Derive an expression for the number of independent parameters in the factor
analysis model described in Section 12.2.4.

12.19 (**) IIiI!I Show that the factor analysis model described in Section 12.2.4 is
invariant under rotations of the latent space coordinates.

12.20 (**) By considering second derivatives, show that the only stationary point of
the log likelihood function for the factor analysis model discussed in Section 12.2.4
with respect to the parameter J1 is given by the sample mean defined by (12.1).
Furthermore, show that this stationary point is a maximum.

12.21 (**) Derive the formulae (12.66) and (12.67) for the E step of the EM algorithm
for factor analysis. Note that from the result of Exercise 12.20, the parameter J1 can
be replaced by the sample mean x.
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12.22 (* *) Write down an expression for the expected complete-data log likelihood func­
tion for the factor analysis model, and hence derive the corresponding M step equa­
tions (12.69) and (12.70).

12.23 (*) III!I Draw a directed probabilistic graphical model representing a discrete
mixture of probabilistic PCA models in which each PCA model has its own values
of W, JL, and 0-

2
• Now draw a modified graph in which these parameter values are

shared between the components of the mixture.

12.24 (***) We saw in Section 2.3.7 that Student's t-distribution can be viewed as an
infinite mixture of Gaussians in which we marginalize with respect to a continu­
ous latent variable. By exploiting this representation, formulate an EM algorithm
for maximizing the log likelihood function for a multivariate Student's t-distribution
given an observed set of data points, and derive the forms of the E and M step equa­
tions.

12.25 (**) III!I Consider a linear-Gaussian latent-variable model having a latent space
distribution p(z) = N(xIO, I) and a conditional distribution for the observed vari­
able p(xlz) = N(xlWz + IL, <p) where <P is an arbitrary symmetric, positive­
definite noise covariance matrix. Now suppose that we make a nonsingular linear
transformation of the data variables x ---t Ax, where A is a D x D matrix. If
JLML' W ML and <PML represent the maximum likelihood solution corresponding to
the original untransformed data, show that AJLML' AWML, and A <PMLAT will rep­
resent the corresponding maximum likelihood solution for the transformed data set.
Finally, show that the form of the model is preserved in two cases: (i) A is a diagonal
matrix and <P is a diagonal matrix. This corresponds to the case of factor analysis.
The transformed <P remains diagonal, and hence factor analysis is covariant under
component-wise re-scaling of the data variables; (ii) A is orthogonal and <P is pro­
portional to the unit matrix so that <P = 0-

21. This corresponds to probabilistic PCA.
The transformed <P matrix remains proportional to the unit matrix, and hence proba­
bilistic PCA is covariant under a rotation of the axes of data space, as is the case for
conventional PCA.

\
12.26 (**) Show that any vector ai that satisfies (12.80) will also satisfy (12.79). Also,

show that for any solution of (12.80) having eigenvalue A, we can add any multiple
of an eigenvector of K having zero eigenvalue, and obtain a solution to (12.79)
that also has eigenvalue A. Finally, show that such modifications do not affect the
principal-component projection given by (12.82).

12.27 (* *) Show that the conventional linear PCA algorithm is recovered as a special case
of kernel PCA if we choose the linear kernel function given by k(x, x') = xT x'.

12.28 (* *) III!I Use the transformation property (1.27) of a probability density under
a change of variable to show that any density p(y) can be obtained from a fixed
density q(x) that is everywhere nonzero by making a nonlinear change of variable
y = f(x) in which f(x) is a monotonic function so that 0 :::; j'(x) < 00. Write
down the differential equation satisfied by f (x) and draw a diagram illustrating the
transformation of the density.
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12.29 (**)Em Suppose that two variables Zl and Z2 are independent so thatp(zl' Z2) =
P(Zl)P(Z2)' Show that the covariance matrix between these variables is diagonal.
This shows that independence is a sufficient condition for two variables to be un­
correlated. Now consider two variables Yl and Y2 in which -1 :0;; Yl :0;; 1 and
Y2 = yg. Write down the conditional distribution p(Y2IYl) and observe that this is
dependent on Yb showing that the two variables are not independent. Now show
that the covariance matrix between these two variables is again diagonal. To do this,
use the relation P(Yl, Y2) = P(YI )p(Y2IYl) to show that the off-diagonal terms are
zero. This counter-example shows that zero correlation is not a sufficient condition
for independence.


