Complex numbers

2+1=0= z=+vV—-1=+i

Fundamental thm of algebra: Every real or complex polynomial of degree "n"” has "n" roots (can be
complex AND repeated)

Example: 2* — 1 = 0 has 4 roots =
o= +1,—1, 4+, —i

[ Euler’s formula: cos(#) + isin(f) = % ]
Proof: (Taylor expansion)
0 _ 1 g, @02 (@0 6P 0P
e —1+Z€+T+T+...—1—E+...+Z(0—E+...)

= cos(#) + isin(0)

This means that e??e=" = 1
Proof:

(cos(f) + isin(f))(cos(8) — isin(#)) = cos* @ + sin? O + isin f cos § — isin  cos O
=1
Roots of unity: an nth root of unity 2" =1

2kmi 2k 2k
exp( 7TZ):(:OS—7T+1'Si1r1—7r, k=0,1,...,n—1
n n n

Euler’s method

Differential equation governs the rate of change of a variable.
dz
E = —XT
This example is exponential decay.

If we know x(ty) we can compute x shortly after (z(ty + At)) with an approximation:

dx(t
2(to + At) = x(ty) + At%
Example:
Find 2(0.1) given 2(0) = 5 using Euler's method:
dx(t)
a "



Eigenvalues and eigenvectors

<

2
. : 1l |-1
Find vectors that stay on their own span, e.g. [0] , [ 1 }
3 111 |3 _3 1
0 2| (0] |0] 10
3 1 |—=1|  |-2| 9 -1
0O 21| |2 1

Example: Consider a 3D rotation, the eigenvector of the rotation is the AXIS OF ROTATION with
eigenvalue A =1

Example:

cosf) —sinf 0

0 0
sinff  cosf O] |0 = [0
0 0 1] (1 1
0
0| is an eigenvector with eigenvalue 1.
1

AU = )\Z_f A: eigenvalue, U eigenvector

AT = T
AT — N =0
(A- X7 =0

Trivial solution @ = 0. Only other way to get zero:

det(A—X)=0

Example: Find eigenvalues of A = [g ;]

(R RA(FRen
= B-N2-)N)=0
= \=3,2



Example: Find eigenvalues of A = [0 _01}

1
0 -1 10 -\ —1
s (7 3]0 1) e (7 21]) -0
= AN +1=0
= \=+1i,—1

All vectors in the REAL plane are rotated = no REAL vectors that stay on their own span.

Example: Find eigenvalues of A = [(1) ﬂ

o 1 o ) =07 1 2]) =

= (1=N)(1-X) =0
=A=1

Only ONE eigenvalue/eigenvector. Find the eigenvector:

B[Rl

a] where a € R.

The eigenvector is {0

Example: Find eigenvalues of A = [g g] .

(o 2 o ) =07 0) =

= (2-XN2-X)=0
= A=2

Find the eigenvectors:

2 0] |a a
20 o)) 2 swm-moacnicn

All vectors are eigenvectors of diagonal matrices!
Uses of eigenvalues/eigenvectors

e dynamical systems - governs timescales

e low-dimensional representations



Differential Equations

systems of equations governing dynamics

Example: Exponential decay
x = firing rate of a neuron, 7 = timescale of neuron

d .
L —z /7 (firing rate decays to zero)

/ dx dt
=

= In(z) = —t/T +c
fL‘(t) —t/T—i—c — G_t/TGC
z(t) = ce /T where ¢=z(0)

* neuron’s firing rate decays with timescale 7 *

Example: Add another neuron as input:

dx 49
— = —I
dt 4
dy

— —y+2
dt Y+ 2z

-4 m -5 2

Suppose the solution takes the form [ﬂ = Bl} e, what are \ and [21} ?
2 2

oo [ [ )

Plug this into the equation:

What are XA and ¥ = [al} ?



Find the eigenvalues:

wf[2 2oy o) (5 )

= (=1 =M (=1=X)—4=0
= MN+20-3=0
= A+3)A=-1)=0

= \=-3,+1

Find the eigenvectors:

—1 2 ap| aq _ _ ay| 1
T e SRR e P e e o e I

-1 2 @ =—+1 “ = —a1+ 2ay = a1 = ay = a1 = “ = 1
2 -1 |a as a2 1

On your own check that these are eigenvectors.
Two solutions of the differential equation:

- l2)- (-l

Any linear combinations are also solutions, let's check this. Let

x . .
[y} = 1MW) + e,

dz
LHS: {@} = Cl<)\1€)\lt)’171 -+ CQ()\Qe)\Qt)UQ = 616)\11‘/()\1171) + CQ@AQt()\2’172>

dt
RHS:  A(c1eM') + coe™'Ty) = c1eM (AT + c0e?! (AT) = 1M (N 7)) + e (Nl )V

Can also do it the looong way. Let

ol = [ e [

LHS: = ca(=3)eM + co(1)eM | [—3cieM + coeM
. % c1(=3)(=1)eM + co(1)eM| | 3ereM + cpeM

-1 2 1] _5 1 .\ [-3cie73 + cpet
RHS: [ 9 _1} (cl {_1] e 4+ co L} e) = |:30163t—|—026t v



Theorem: If you start on an eigenvector, you STAY on an eigenvector.
”Proof”: (using Euler's method)

2(t + A)] [x(t)} dw(t)]
~ + At |
8] =[]+ e
.I(t) da(t)
If {y(t)] = o (eigenvector of A), then @ =A==
t -

Bgiﬁiﬂ ~ {x(tg +AL A [z()y(t)] = 1+ AtA)D

still on eigenvector

What does A > 0 versus A < 0 mean?
* note we can think about these neurons as " groups of neurons” *

How can we make the system stable? (don't want x — oo,y — 00)

dx
1= 12 S0 - (5 A
gt 1 = = —21
d
L—"J [ 2 =3 |y 2 -1 Y
The neurons will decay faster, why would this make this stable?

det(A—AI) =0
Now subtract 27 and find new eigenvalues
det(A — 21 — Apew!) = det(A — (24 Apew)I) =0
= 24 Anew = A
= Apew = A — 2

Theorem: Eigenvalues of A+ bl are A+ b where ) are eigenvalues of A and eigenvectors are the same
as the eigenvectors of A.
Proof:

(A+b)v=(N+b)T
AU+ bIU = AU+ bv
= ¥ is also an eigenvector of A 4+ bl

i -3 2] [z : : . [1] [t
New system | 4 | = 9 3 has eigenvalues A = —5, —1 and eigenvectors v = TRRE
at 2l Y -

How else can we prevent neurons from — oo?
add inhibitory neurons!



Example: Inhibitory neuron

dx
LA
= 1 01y
Which neuron in this system is the "excitatory neuron” and which is the "inhibitory neuron”?
Find eigenvalues (recall from video):
0 —1 10 -2 -1
(0]l e (7S] -
=N +1=0
= A= +i,—1
Therefore, z and y are functions of e = cos(t)isin(¢) = OSCILLATIONS!
Make phase diagram and show oscillation.

See what happens when A = —1 £ .



Diagonalizing a matrix

Let A be a matrix, with \{, Ay eigenvalues and 7’1, ¥5 eigenvectors. Let's multiply A with its eigenvectors:
A [:E’l :E’g] = [A:I:’l Afz} = [)\1:51 )\29?2} .

We can rewrite the RHS side as a matrix multiplication:

B dofy] = [f1 7] [Aol AOJ — VA

where we term the eigenvector matrix V' and the diagonal matrix with the eigenvalues A. Now let’s
rewrite the first expression and try to diagonalize A:
AV =VA

Multiply by V! on both sides.
V3IAV = VIWVA = A

V' diagonalizes A.

Can decompose A into V' e'vectors and A e'values:

A=VAV™

This also makes it easy to compute powers of A:
A? = (VAV HY(VAV Y = VA2V !
= A" = VA"V

As n — 0o, A > 1 will dominate and therefore the transformation will tend towards its corresponding
eigenvector.

Similar matrices

Let B be similar to A: B = M~'AM and BZ = \Z. What are the eigenvalues and eigenvectors of A?
B = M 'AMZ = \¢

Multiply both sides by M

M(MAM)#
= A(MZ)

M)
A(MZ)

Same eigenvalues, eigenvectors transformed by M.
* any matrix is similar to the diagonal matrix (through eigenvectors): A = V1AV *



Symmetric matrices
Definition: A is symmetric if A = AT.

-1 2

2 -1

} has A = —3, +1 and eigenvectors [_11} , [H

Example: Recall from last class, A = [

These eigenvalues are real numbers. These eigenvectors are also orthogonal. How do we check

orthogonality?
-
1 1

Orthonormal matrices are orthogonal matrices with columns with unit norm - how do we make
V= [171 172] have columns of unit norm?

RN

Prove for yourself that this works.

Theorem: Matrix V orthonormal < V1 =VT.
Proof: (right-direction) We will show for a two column matrix, but applies to an N-D matrix:
o T_ |%
V = [v1 vﬂ and V' = {4]
V2

Since ¥ and i, are orthogonal, #] @ = 0. Since ¥} and ¥, are unit norm, ¥ 71 = 1 and 7 7 = 1 =

10

Ty —
vv_[o1

}:I:H/T:V‘l

1 1
_ 1
Check for V = % [_1 1

1 that the inverse is the transpose.

Theorem: Symmetric matrices (A = AT) have real eigenvalues and orthogonal eigenvectors.

Proof: (for orthogonal eigenvectors)
Rewrite A as A = VAV ™!
= AT =WVAV )T =V HTAVT

By definition,
A=AT =2 VAV =WV HTAVT

How do we achieve equality for this expression? V=1 =V T
Thus, V' is an orthonormal matrix = eigenvectors are orthogonal.



Positive semi-definite matrices
Definition: S is positive semi-definite if S = AT A.

Theorem: Positive semi-definite matrices are symmetric.
Proof:
S=ATA= ST =(ATA)T =AT(AT)T=ATA

=S5=29T

Theorem: Positive semi-definite matrices have all eigenvalues A > 0

Proof: Let \, U be eigenvalues and eigenvectors of S
AT AT = N\
T (AT AG) = o7 (\D)
ﬁT(ATAﬁ) 7T (D)
(AD) T (AT) = )\vTﬁ
I|AG||* = M||7]|* norm is always positive
=A>0 VS=ATA

When will A = 07
*if S does not have independent columns (determinant = 0) (not full rank)*

Example: S = E ﬂ find eigenvalues i, \» and eigenvectors vy, Us.

wll )l 1))

=M -2 4+1=0

= AA—2)=0
= A=0,2
L0 2] > aro-ramrmamn- L]
L0 =0 = arvm0mb-amm =[]

Rewrite S as diagonalization. There is a full column of zeros = ¥, doesn't matter:
5_11(2)1T_1 1"
N 1l |11

2|1
10



Example: 2 neurons' firing rates in response to 6 different stimuli (normalized to zero average firing
rate). Make a matrix neurons x stimuli:

5 48 101 0] A
X‘{? 2 7 -9 0 —3}_[3“1 IG}_{*T}

How are these neurons' firing rates covarying?

covariance matrix
. COV(ﬁl, ﬁl) COV(’f_L)l7 ﬁg)
N COV(ﬁQ, ﬁl) COV(ﬁQ, ﬁg)

Here are the terms in the matrix:

TR {(J;ﬂ — &)z — 1) (i — 1) (2 — zg)]

Netim = [(wiz = T2)(xis = 1) (Tiz — T2) (w32 — T2)

where i is for different stimuli. Equivalent to

= covariance matrix S = Nlt. XxT — B;l gg]

What are the eigenvalues and eigenvectors? S is positive semi-definite so A > 0.

~Jo2] - [-0.69
A=652 0= [0.69} V2 = { 0.72 }

What do you notice when you plot these vectors?

What is the projection of X onto #; and 757
Stimulus response &; onto eigenvector ¥ :

#

lcls

projg 1 =

Normally we have thousands of neurons... what do we do?

11



In [1]: 1 dimport numpy as np
2 import matplotlib.pyplot as plt
3 =matplotlib inline
4
5 nl = np.array([5,-4,8,-16,1,0])
6 n2 = np.array([7,-2,7,-9,8,-3])
7
8 A = np.concatenate((nl[np.newaxis,:], n2[np.newaxis,:]), axis=8)
9 print(A.shape)
16

11 # plot neuron activity

12 fig = plt.figure(figsize=(4,4))
13 ax = fig.add_subplot(111)

14 ax.scatter(nl,n2,s=60)

15 ax.set_xlabel('neuron 1')

16 ax.set_ylabel('neuron 2")

17 ax.set_xlim(-11,11)

18 ax.set_ylim(-11,11)

19 plt.show()

(2, 8)
10.0
3 e e
50
~ 25
§ o .
z
L ]
s -5 *
-5.0
-15
-100
1o 5 [ 5 0
neuron 1
In [2]: 1 print('covariance matrix')
2 covA = A @A.T / A.shape[l]
3 print('[[ %2.0f, %2.0f 1,\n [ %2.0f, %2.0f ]]'%(covA[®,0],covA[®,1],covA[l,0],covA[1,1]))
4
5 # find eigenvalues and eigenvectors of covariance matrix
6 lam, v = np.linalg.eig(A @ A.T / A.shape[1])
7
8 print('eigenvalues: %2.6f, %2.0f'%s(lam[0],lam[1]))
9 print('eigenvectors: [%2.2f,%2.2f], [%2.2f,%2.2f]'s(v[e,0],v[1,0],v[6,1],v[1,1]))
covariance matrix
[l 34, 32 ],
[ 32, 32 ]]
eigenvalues: 65, 2
eigenvectors: [©.72,8.69], [-0.69,0.72]
In [3]: # plot EIGENVECTOR on top

fig = plt.figure(figsize=(4,4))

ax = fig.add_subplot({111)

ax.scatter(nl,n2,5=60)

ax.plot(np.array([-11,11]), np.array([-11,11])*v[1,0]/v[8,08],color="k', zorder=8, lw=3)
ax.text(7,5, 'evectorl’, fontsize=15)

ax.plot(np.array([-3,3]), np.array([-3,3])*v[1,1]/v[@,1],'--',color="k', zorder=8)
ax.text(5,-4, 'evector2',fontsize=15)

ax.set_xlabel('neuron 1')

10 ax.set_ylabel('neuron 2")

11 ax.set_xlim(-11,11)

12 ax.set_ylim(-11,11)

13 plt.show()

[T~ RN T R S Y

10.0

75

50

25

0.0

neuron 2

-5.0

-15

-10.0

o [} 5 10
neuron L
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Principal components analysis

e most data is HIGH-dimensional, how do we visualize/understand it?

e PCA is a linear dimensionality reduction technique

e The first PC is a projection that captures the MOST variance in the data

e find a low-dimensional space that preserves as much variance in the original data as possible.
e can use low-D summary and it may be more interpretable

e can also use as a pre-processing step before doing classification or regression — a low-dimensional
regression has FEWER parameters so it acts as a "regularization” step

PCA derivation: (maximum variance)

X=[# .. 7]  sstimuliz; eR"

1
max var; (i, ;) = > (] @) (a] &) "
(1 Nstim
1 ST T\~
= WElulT(xleT)ul
stim
= i} St

if ||@1|] — oo, then variance will — oo. We therefore need to constrain this optimization such that the
norm of u; < co. We choose u; = 1. To do constrained optimization we use Lagrange multipliers:

ﬁ(ﬁl,)\) == Ul Su1 /\( I uy — 1)

0 O /T an T T oo T
a7, —L(t,\) = o7 (@ Sty — M@ @y — 1)) — L1, \) = =+ (@] St — \(@] @ — 1))

9 Kl
8_, ,C(Ul,>\) = 2861 — 2)\’1_[1 =0 _'T_' _

Q.)
Q

:>Sﬁ1:)\ﬁ1 :>H?7:1H2:1

Can you tell what ; should be to satisfy this equation?

Let u; be an eigenvector of the covariance matrix S, which eigenvector maximuizes the variance?
max var;(i, ¥;) = i, S, where @, is an eigenvector

iy

= \i| iy, = MN|@|]? = A

13



PCA: The eigenvector with the largest eigenvalue is the first principal component. The next
principal components are the following eigenvectors.

PCA derivation: (minimize residuals)
Introduce D orthonormal basis vectors ; such that u;i; = d;;. We can represent each neuron 7, as

Fo= Y (F)il;)i;
i=1

where each neuron is a sum of u; with weights of the projection of 7,, onto the vectors ;. How do we
choose w; to minimize the error of the reconstruction of the original data with only M vectors?

M D
Ty = E Znill; + biU;
i=1 i=M+1

b; are the same for all neurons (to make an M dimensional representation). Minimize reconstruction
error:

N N M T M T/
ni —1 ni n ne i=1 =1 =1
L Mo T 5 M T /M

continue this as an exercise (see PRML by Bishop for help)

14



Singular value decomposition (is basically PCA)

Definition: Singular value decomposition of a matrix M decomposes it into 3 matrices ULV T where
U and V are orthonormal and X is diagonal. If M has only real (not complex) entries, then U, V' and
Y. are also real. (pic from wikipedia)

Bl 4

V= U

‘ E
—_—>

M=UX-V*

What are U and V' and how do they relate to PCA?

Suppose X = UXV . Compute covariance:
XXT=(wxvhHwzvhT
=uUxvive'u’
= UX?U" (because V is orthonormal)

U are the eigenvectors of S = X X T which from above are the principal components.
Solve for V:

X=UxV"
»yluTx =vT
X'unt=v

So V = XTUX™!, data rotated by U and then inverse scaled by X.

15



Properties of matrices

Matrix type

definition

what does it mean?

diagonalizable matrix

independent eigenvectors (no
repeated eigenvalues)

A=VAV!

same eigenvalues as A, eigenvectors rotated:

imil i A B=M"1AM .
similar matrix (to A) e
. : T real eigenvalues and orthogonal eigenvectors
symmetric matrix A=A _1 T
V==V
eigenvalues A > 0 (with equality if columns
positive semi-definite matrix | S = ATA not independent) and orthogonal eigenvectors

(v-r=VvT)

covariance matrix

S = %XXT where N is #

of columns

positive semi-definite (see above)

16




