Complex numbers

$$
x^{2}+1=0 \Rightarrow x= \pm \sqrt{-1}= \pm i
$$

Fundamental thm of algebra: Every real or complex polynomial of degree " n " has " n " roots (can be complex AND repeated)

Example: $x^{4}-1=0$ has 4 roots \Rightarrow

$$
x=+1,-1,+i,-i
$$

Euler's formula: $\cos (\theta)+i \sin (\theta)=e^{i \theta}$
Proof: (Taylor expansion)

$$
\begin{aligned}
e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\ldots & =1-\frac{\theta^{2}}{2}+\ldots+i\left(\theta-\frac{\theta^{3}}{6}+\ldots\right) \\
& =\cos (\theta)+i \sin (\theta)
\end{aligned}
$$

This means that $e^{i \theta} e^{-i \theta}=1$
Proof:

$$
\begin{aligned}
(\cos (\theta)+i \sin (\theta))(\cos (\theta)-i \sin (\theta)) & =\cos ^{2} \theta+\sin ^{2} \theta+i \sin \theta \cos \theta-i \sin \theta \cos \theta \\
& =1
\end{aligned}
$$

Roots of unity: an nth root of unity $z^{n}=1$

$$
\exp \left(\frac{2 k \pi i}{n}\right)=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}, \quad k=0,1, \ldots, n-1
$$

Euler's method

Differential equation governs the rate of change of a variable.

$$
\frac{d x}{d t}=-x
$$

This example is exponential decay.
If we know $x\left(t_{0}\right)$ we can compute x shortly after $\left(x\left(t_{0}+\Delta t\right)\right)$ with an approximation:

$$
x\left(t_{0}+\Delta t\right)=x\left(t_{0}\right)+\Delta t \frac{d x\left(t_{0}\right)}{d t}
$$

Example:

Find $x(0.1)$ given $x(0)=5$ using Euler's method:

$$
\frac{d x(t)}{d t}=-x
$$

Eigenvalues and eigenvectors

Example:

$$
A=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]
$$

Find vectors that stay on their own span, e.g. $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

$$
\begin{gathered}
{\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
{\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
2
\end{array}\right]=2\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}
\end{gathered}
$$

Example: Consider a 3D rotation, the eigenvector of the rotation is the AXIS OF ROTATION with eigenvalue $\lambda=1$

$$
\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$A \vec{v}=\lambda \vec{v}, \quad \lambda:$ eigenvalue, $\vec{v}:$ eigenvector

$$
\begin{aligned}
A \vec{v} & =\lambda I \vec{v} \\
A \vec{v}-\lambda I \vec{v} & =\overrightarrow{0} \\
(A-\lambda I) \vec{v} & =\overrightarrow{0}
\end{aligned}
$$

Trivial solution $\vec{v}=\overrightarrow{0}$. Only other way to get zero:

$$
\operatorname{det}(A-\lambda I)=0
$$

Example: Find eigenvalues of $A=\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right]\right) & =0 \\
\Rightarrow(3-\lambda)(2-\lambda) & =0 \\
\Rightarrow \lambda & =3,2
\end{aligned}
$$

Example: Find eigenvalues of $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right]\right) & =0 \\
\Rightarrow \lambda^{2} & +1
\end{aligned}=0,
$$

All vectors in the REAL plane are rotated \Rightarrow no REAL vectors that stay on their own span.
Example: Find eigenvalues of $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
0 & 1-\lambda
\end{array}\right]\right) & =0 \\
\Rightarrow(1-\lambda)(1-\lambda) & =0 \\
\Rightarrow \lambda & =1
\end{aligned}
$$

Only ONE eigenvalue/eigenvector. Find the eigenvector:

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=1\left[\begin{array}{l}
a \\
b
\end{array}\right] \Rightarrow a+b=a \Rightarrow b=0
$$

The eigenvector is $\left[\begin{array}{l}a \\ 0\end{array}\right]$ where $a \in \mathbb{R}$.
Example: Find eigenvalues of $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$.

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 0 \\
0 & 2-\lambda
\end{array}\right]\right) & =0 \\
\Rightarrow(2-\lambda)(2-\lambda) & =0 \\
\Rightarrow \lambda & =2
\end{aligned}
$$

Find the eigenvectors:

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=2\left[\begin{array}{l}
a \\
b
\end{array}\right] \Rightarrow 2 a=2 a ; 2 b=2 b \Rightarrow a \in \mathbb{R}, b \in \mathbb{R}
$$

All vectors are eigenvectors of diagonal matrices!

Uses of eigenvalues/eigenvectors

- dynamical systems - governs timescales
- low-dimensional representations

Differential Equations

systems of equations governing dynamics

Example: Exponential decay
$x=$ firing rate of a neuron, $\tau=$ timescale of neuron

$$
\begin{aligned}
\frac{d x}{d t} & =-x / \tau \quad(\text { firing rate decays to zero }) \\
\Rightarrow \int \frac{d x}{x} & =\int \frac{-d t}{\tau} \\
\Rightarrow \ln (x) & =-t / \tau+c \\
\Rightarrow x(t) & =e^{-t / \tau+c}=e^{-t / \tau} e^{c} \\
x(t) & =c e^{-t / \tau} \quad \text { where } \quad c=x(0)
\end{aligned}
$$

* neuron's firing rate decays with timescale τ^{*}

Example: Add another neuron as input:

$$
\begin{aligned}
& \frac{d x}{d t}=-x+2 y \\
& \frac{d y}{d t}=-y+2 x
\end{aligned}
$$

We can rewrite this as a matrix multiplication:

$$
\left[\begin{array}{l}
\frac{d x}{d t} \\
\frac{d y}{d t}
\end{array}\right]=A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Suppose the solution takes the form $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right] e^{\lambda t}$, what are λ and $\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$?

$$
\text { LHS: }\left[\begin{array}{l}
\frac{d x}{d t} \\
\frac{d y}{d t}
\end{array}\right]=\left[\begin{array}{l}
\frac{d}{d t}\left(a_{1} e^{\lambda t}\right) \\
\frac{d}{d t}\left(a_{2} e^{\lambda t}\right)
\end{array}\right]=\left[\begin{array}{l}
a_{1}\left(\lambda e^{\lambda t}\right) \\
a_{2}\left(\lambda e^{\lambda t}\right)
\end{array}\right]=\lambda\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] e^{\lambda t}
$$

Plug this into the equation:

$$
\begin{aligned}
& \lambda\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] e^{\lambda t}=\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] e^{\lambda t} \\
& \Rightarrow \lambda\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]
\end{aligned}
$$

Let $\vec{v}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ and $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right]$

$$
\Rightarrow \lambda \vec{v}=A \vec{v}
$$

What are λ and $\vec{v}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$?

Find the eigenvalues:

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 2 \\
2 & -1-\lambda
\end{array}\right]\right) & =0 \\
\Rightarrow(-1-\lambda)(-1-\lambda)-4 & =0 \\
\Rightarrow \lambda^{2}+2 \lambda-3 & =0 \\
\Rightarrow(\lambda+3)(\lambda-1) & =0 \\
\Rightarrow \lambda & =-3,+1
\end{aligned}
$$

Find the eigenvectors:

$$
\begin{gathered}
{\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=-3\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \Rightarrow-a_{1}+2 a_{2}=-3 a_{1} \Rightarrow a_{2}=-a_{1} \Rightarrow\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]} \\
{\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=+1\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \Rightarrow-a_{1}+2 a_{2}=a_{1} \Rightarrow a_{2}=a_{1} \Rightarrow\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
\end{gathered}
$$

On your own check that these are eigenvectors.
Two solutions of the differential equation:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=c_{1} e^{-3 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad\left[\begin{array}{l}
x \\
y
\end{array}\right]=c_{2} e^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Any linear combinations are also solutions, let's check this. Let

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=c_{1} e^{\lambda_{1} t} \vec{v}_{1}+c_{2} e^{\lambda_{2} t} \vec{v}_{2}
$$

LHS: $\left[\begin{array}{c}\frac{d x}{d t} \\ \frac{d y}{d t}\end{array}\right]=c_{1}\left(\lambda_{1} e^{\lambda_{1} t}\right) \vec{v}_{1}+c_{2}\left(\lambda_{2} e^{\lambda_{2} t}\right) \vec{v}_{2}=c_{1} e^{\lambda_{1} t}\left(\lambda_{1} \vec{v}_{1}\right)+c_{2} e^{\lambda_{2} t}\left(\lambda_{2} \vec{v}_{2}\right)$
RHS: $A\left(c_{1} e^{\lambda_{1} t} \vec{v}_{1}+c_{2} e^{\lambda_{1} t} \vec{v}_{2}\right)=c_{1} e^{\lambda_{1} t}\left(A \vec{v}_{1}\right)+c_{2} e^{\lambda_{2} t}\left(A \vec{v}_{2}\right)=c_{1} e^{\lambda_{1} t}\left(\lambda_{1} \vec{v}_{1}\right)+c_{2} e^{\lambda_{2} t}\left(\lambda_{2} \vec{v}_{2}\right) \checkmark$

Can also do it the looong way. Let

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=c_{1} e^{-3 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

LHS: $\left[\begin{array}{l}\frac{d x}{d t} \\ \frac{d y}{d t}\end{array}\right]=\left[\begin{array}{c}c_{1}(-3) e^{\lambda t}+c_{2}(1) e^{\lambda t} \\ c_{1}(-3)(-1) e^{\lambda t}+c_{2}(1) e^{\lambda t}\end{array}\right]=\left[\begin{array}{c}-3 c_{1} e^{\lambda t}+c_{2} e^{\lambda t} \\ 3 c_{1} e^{\lambda t}+c_{2} e^{\lambda t}\end{array}\right]$
RHS: $\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right]\left(c_{1}\left[\begin{array}{c}1 \\ -1\end{array}\right] e^{-3 t}+c_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{t}\right)=\left[\begin{array}{c}-3 c_{1} e^{-3 t}+c_{2} e^{t} \\ 3 c_{1} e^{-3 t}+c_{2} e^{t}\end{array}\right] \checkmark$

Theorem: If you start on an eigenvector, you STAY on an eigenvector.
"Proof": (using Euler's method)

$$
\left[\begin{array}{l}
x(t+\Delta t) \\
y(t+\Delta t)
\end{array}\right] \approx\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\Delta t\left[\begin{array}{l}
\frac{d x(t)}{d t} \\
\frac{d y(t)}{d t}
\end{array}\right]
$$

If $\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]=\vec{v}$ (eigenvector of A), then $\left[\begin{array}{l}\frac{d x(t)}{d t} \\ \frac{d y(t)}{d t}\end{array}\right]=A \vec{v}=\lambda \vec{v} \Rightarrow$

$$
\left[\begin{array}{l}
x(t+\Delta t) \\
y(t+\Delta t)
\end{array}\right] \approx\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\Delta t \lambda[x(t) y(t)]=(1+\Delta t \lambda) \vec{v}
$$

still on eigenvector
What does $\lambda>0$ versus $\lambda<0$ mean?

* note we can think about these neurons as "groups of neurons" *

How can we make the system stable? (don't want $x \rightarrow \infty, y \rightarrow \infty$)

$$
\left[\begin{array}{l}
\frac{d x}{d t} \\
\frac{d y}{d t}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 2 \\
2 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left(\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]-2 I\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The neurons will decay faster, why would this make this stable?

$$
\operatorname{det}(A-\lambda I)=0
$$

Now subtract $2 I$ and find new eigenvalues

$$
\begin{aligned}
\operatorname{det}\left(A-2 I-\lambda_{\text {new }} I\right)=\operatorname{det}\left(A-\left(2+\lambda_{\text {new }}\right) I\right) & =0 \\
\Rightarrow 2+\lambda_{\text {new }} & =\lambda \\
\Rightarrow \lambda_{\text {new }} & =\lambda-2
\end{aligned}
$$

Theorem: Eigenvalues of $A+b I$ are $\lambda+b$ where λ are eigenvalues of A and eigenvectors are the same as the eigenvectors of A.
Proof:

$$
\begin{aligned}
(A+b I) \vec{v} & =(\lambda+b) \vec{v} \\
A \vec{v}+b I \vec{v} & =\lambda \vec{v}+b \vec{v}
\end{aligned}
$$

$\Rightarrow \vec{v}$ is also an eigenvector of $A+b I$
New system $\left[\begin{array}{l}\frac{d x}{d t} \\ \frac{d y}{d t}\end{array}\right]=\left[\begin{array}{cc}-3 & 2 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ has eigenvalues $\lambda=-5,-1$ and eigenvectors $\vec{v}=\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

How else can we prevent neurons from $\rightarrow \infty$?
add inhibitory neurons!

Example: Inhibitory neuron

$$
\left[\begin{array}{l}
\frac{d x}{d t} \\
\frac{d y}{d t}
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Which neuron in this system is the "excitatory neuron" and which is the "inhibitory neuron"?
Find eigenvalues (recall from video):

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right]\right) & =0 \\
\Rightarrow \lambda^{2} & +1
\end{aligned}=0
$$

Therefore, x and y are functions of $e^{i t}=\cos (t) i \sin (t) \Rightarrow$ OSCILLATIONS!
Make phase diagram and show oscillation.
See what happens when $\lambda=-1 \pm i$.

Diagonalizing a matrix

Let A be a matrix, with λ_{1}, λ_{2} eigenvalues and \vec{x}_{1}, \vec{x}_{2} eigenvectors. Let's multiply A with its eigenvectors:

$$
A\left[\begin{array}{ll}
\vec{x}_{1} & \vec{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A \vec{x}_{1} & A \vec{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\lambda_{1} \vec{x}_{1} & \lambda_{2} \vec{x}_{2}
\end{array}\right] .
$$

We can rewrite the RHS side as a matrix multiplication:

$$
\left[\begin{array}{ll}
\lambda_{1} \vec{x}_{1} & \lambda_{2} \vec{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\vec{x}_{1} & \vec{x}_{2}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=V \Lambda
$$

where we term the eigenvector matrix V and the diagonal matrix with the eigenvalues Λ. Now let's rewrite the first expression and try to diagonalize A :

$$
A V=V \Lambda
$$

Multiply by V^{-1} on both sides.

$$
V^{-1} A V=V^{-1} V \Lambda=\Lambda
$$

V diagonalizes A.

Can decompose A into V e'vectors and Λ e'values:

$$
A=V \Lambda V^{-1}
$$

This also makes it easy to compute powers of A :

$$
\begin{gathered}
A^{2}=\left(V \Lambda V^{-1}\right)\left(V \Lambda V^{-1}\right)=V \Lambda^{2} V^{-1} \\
\Rightarrow A^{n}=V \Lambda^{n} V^{-1}
\end{gathered}
$$

As $n \rightarrow \infty, \lambda>1$ will dominate and therefore the transformation will tend towards its corresponding eigenvector.

Similar matrices

Let B be similar to $A: B=M^{-1} A M$ and $B \vec{x}=\lambda \vec{x}$. What are the eigenvalues and eigenvectors of A ?

$$
B \vec{x}=M^{-1} A M \vec{x}=\lambda \vec{x}
$$

Multiply both sides by M

$$
\begin{aligned}
M\left(M^{-1} A M\right) \vec{x} & =M(\lambda \vec{x}) \\
\Rightarrow A(M \vec{x}) & =\lambda(M \vec{x})
\end{aligned}
$$

Same eigenvalues, eigenvectors transformed by M.

* any matrix is similar to the diagonal matrix (through eigenvectors): $\Lambda=V^{-1} A V^{*}$

Symmetric matrices

Definition: A is symmetric if $A=A^{\top}$.
Example: Recall from last class, $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right]$ has $\lambda=-3,+1$ and eigenvectors $\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
These eigenvalues are real numbers. These eigenvectors are also orthogonal. How do we check orthogonality?

$$
\left[\begin{array}{c}
1 \\
-1
\end{array}\right]^{\top}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=1-1=0 \checkmark
$$

Orthonormal matrices are orthogonal matrices with columns with unit norm - how do we make $V=\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}\end{array}\right]$ have columns of unit norm?

$$
V=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Prove for yourself that this works.
Theorem: Matrix V orthonormal $\Longleftrightarrow V^{-1}=V^{\top}$.
Proof: (right-direction) We will show for a two column matrix, but applies to an N-D matrix:

$$
\begin{gathered}
V=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right] \quad \text { and } \quad V^{\top}=\left[\begin{array}{l}
\vec{v}_{1} \\
\vec{v}_{2}
\end{array}\right] \\
\Rightarrow V^{\top} V=\left[\begin{array}{l}
\vec{v}_{1}^{\top} \\
\vec{v}_{2}^{\top}
\end{array}\right]\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\vec{v}_{1}^{\top} \vec{v}_{1} & \vec{v}_{1}^{\top} \vec{v}_{2} \\
\vec{v}_{2}^{\top} \vec{v}_{1} & \vec{v}_{2}^{\top} \vec{v}_{2}
\end{array}\right]
\end{gathered}
$$

Since \vec{v}_{1} and \vec{v}_{2} are orthogonal, $\vec{v}_{1}^{\top} \vec{v}_{2}=0$. Since \vec{v}_{1} and \vec{v}_{2} are unit norm, $\vec{v}_{1}^{\top} \vec{v}_{1}=1$ and $\vec{v}_{2}^{\top} \vec{v}_{2}=1 \Rightarrow$

$$
V^{\top} V=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I \Rightarrow V^{\top}=V^{-1}
$$

Check for $V=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$ that the inverse is the transpose.

Theorem: Symmetric matrices $\left(A=A^{\top}\right)$ have real eigenvalues and orthogonal eigenvectors.

Proof: (for orthogonal eigenvectors)
Rewrite A as $A=V \Lambda V^{-1}$

$$
\Rightarrow A^{\top}=\left(V \Lambda V^{-1}\right)^{\top}=\left(V^{-1}\right)^{\top} \Lambda V^{\top}
$$

By definition,

$$
A=A^{\top} \Rightarrow V \Lambda V^{-1}=\left(V^{-1}\right)^{\top} \Lambda V^{\top}
$$

How do we achieve equality for this expression? $V^{-1}=V^{\top}$
Thus, V is an orthonormal matrix \Rightarrow eigenvectors are orthogonal.

Positive semi-definite matrices

Definition: S is positive semi-definite if $S=A^{\top} A$.
Theorem: Positive semi-definite matrices are symmetric.
Proof:

$$
\begin{aligned}
S=A^{\top} A \Rightarrow S^{\top}= & \left(A^{\top} A\right)^{\top}=A^{\top}\left(A^{\top}\right)^{\top}=A^{\top} A \\
& \Rightarrow S=S^{\top}
\end{aligned}
$$

Theorem: Positive semi-definite matrices have all eigenvalues $\lambda \geq 0$
Proof: Let λ, \vec{v} be eigenvalues and eigenvectors of S

$$
\begin{aligned}
A^{\top} A \vec{v} & =\lambda \vec{v} \\
\vec{v}^{\top}\left(A^{\top} A \vec{v}\right) & =\vec{v}^{\top}(\lambda \vec{v}) \\
\vec{v}^{\top}\left(A^{\top} A \vec{v}\right) & =\vec{v}^{\top}(\lambda \vec{v}) \\
(A \vec{v})^{\top}(A \vec{v}) & =\lambda \vec{v}^{\top} \vec{v} \\
\|A \vec{v}\|^{2} & =\lambda\|\vec{v}\|^{2} \quad \text { norm is always positive } \\
\Rightarrow \lambda & \geq 0 \quad \forall S=A^{\top} A
\end{aligned}
$$

When will $\lambda=0$?

* if S does not have independent columns (determinant $=0$) (not full rank)*

Example: $S=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, find eigenvalues λ_{1}, λ_{2} and eigenvectors \vec{v}_{1}, \vec{v}_{2}.

$$
\begin{array}{r}
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right]\right)=0 \\
\Rightarrow \lambda^{2}-2 \lambda+1=0 \\
\Rightarrow \lambda(\lambda-2)=0 \\
\Rightarrow \lambda=0,2 \\
{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=2\left[\begin{array}{l}
a \\
b
\end{array}\right] \Rightarrow a+b=2 a \Rightarrow b=a \Rightarrow \vec{v}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
1
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=0\left[\begin{array}{l}
a \\
b
\end{array}\right] \Rightarrow a+b=0 \Rightarrow b=-a \Rightarrow \vec{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]}
\end{array}
$$

Rewrite S as diagonalization. There is a full column of zeros $\Rightarrow \vec{v}_{2}$ doesn't matter:

$$
S=\frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right](2)\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{\top}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{\top}
$$

Example: 2 neurons' firing rates in response to 6 different stimuli (normalized to zero average firing rate). Make a matrix neurons \times stimuli:

$$
X=\left[\begin{array}{cccccc}
5 & -4 & 8 & -10 & 1 & 0 \\
7 & 2 & 7 & -9 & 0 & -3
\end{array}\right]=\left[\begin{array}{lll}
\vec{x}_{1} & \ldots & \vec{x}_{6}
\end{array}\right]=\left[\begin{array}{c}
\vec{n}_{1}^{\top} \\
\vec{n}_{2}^{\top}
\end{array}\right]
$$

How are these neurons' firing rates covarying? covariance matrix

$$
S=\left[\begin{array}{ll}
\operatorname{cov}\left(\vec{n}_{1}, \vec{n}_{1}\right) & \operatorname{cov}\left(\vec{n}_{1}, \vec{n}_{2}\right) \\
\operatorname{cov}\left(\vec{n}_{2}, \vec{n}_{1}\right) & \operatorname{cov}\left(\vec{n}_{2}, \vec{n}_{2}\right)
\end{array}\right]
$$

Here are the terms in the matrix:

$$
\frac{1}{N_{\text {stim }}} \sum_{i=1}^{N_{\text {stim }}}\left[\begin{array}{ll}
\left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 1}-\bar{x}_{1}\right) & \left(x_{i 1}-\bar{x}_{1}\right)\left(x_{i 2}-\bar{x}_{2}\right) \\
\left(x_{i 2}-\bar{x}_{2}\right)\left(x_{i 1}-\bar{x}_{1}\right) & \left(x_{i 2}-\bar{x}_{2}\right)\left(x_{i 2}-\bar{x}_{2}\right)
\end{array}\right]
$$

where i is for different stimuli. Equivalent to

$$
\frac{1}{N_{\text {stim }}} \sum_{i=1}^{N_{\text {stim }}}\left(\vec{x}_{i}-\bar{x}\right)\left(\vec{x}_{i}-\bar{x}\right)^{\top}
$$

\Rightarrow covariance matrix $S=\frac{1}{N_{\text {stim }}} X X^{\top}=\left[\begin{array}{ll}34 & 32 \\ 32 & 32\end{array}\right]$.
What are the eigenvalues and eigenvectors? S is positive semi-definite so $\lambda \geq 0$.

$$
\lambda=65,2 ; \quad \vec{v}_{1}=\left[\begin{array}{l}
0.72 \\
0.69
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-0.69 \\
0.72
\end{array}\right]
$$

What do you notice when you plot these vectors?
What is the projection of X onto \vec{v}_{1} and \vec{v}_{2} ?
Stimulus response \vec{x}_{1} onto eigenvector \vec{v}_{1} :

$$
\operatorname{proj}_{\vec{v}_{1}} \vec{x}_{1}=\frac{\vec{x}_{1}^{\top} \vec{v}_{1}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}=\left(\vec{x}_{1}^{\top} \vec{v}_{1}\right) \vec{v}_{1}
$$

Normally we have thousands of neurons... what do we do?

In [1]: 1 import numpy as np
2 import matplotlib.pyplot as plt
\%matplotlib inline
n1 = np.array([5,-4, 8, -10,1,0])
$\mathrm{n} 2=n p . \operatorname{array}([7,-2,7,-9,0,-3])$
$\mathrm{A}=\mathrm{np}$. concatenate((n1[np.newaxis,:], $\mathrm{n} 2[\mathrm{np}$. newaxis,:]), axis=0)
print (A.shape)
\# plot neuron activity
fig $=$ plt.figure(figsize=(4,4))
ax = fig.add subplot(111)
ax.scatter($\mathrm{n} \overline{1}, \mathrm{n} 2, \mathrm{~s}=60$)
ax.set xlabel('neuron 1')
ax.set_ylabel('neuron 2')
ax.set_xlim(-11,11)
ax.set_ylim(-11,11)
plt.show()
$(2,6)$

In [2]: 1 print('covariance matrix')
covA = A @ A.T / A.shape[1]
print('[[\%2.0f, \%2.0f], \n [\%2.0f, \%2.0f]]'\%(covA[0,0], covA[0,1], covA[1,0], covA[1,1]))
\# find eigenvalues and eigenvectors of covariance matrix
lam, $v=n p . l i n a l g . e i g(A ~ @ A . T / A . s h a p e[1])$
print('eigenvalues: \%2.0f, \%2.0f'\%(lam[0],lam[1]))
print('eigenvectors: [\%2.2f, \%2.2f], [\%2.2f, \%2.2f] '\%(v[0,0],v[1,0],v[0,1],v[1,1]))
covariance matrix
[[34, 32],
[32, 32]]
eigenvalues: 65, 2
eigenvectors: [0.72,0.69], [-0.69,0.72]
In [3]: 1 \# plot EIGENVECTOR on top
fig = plt.figure(figsize=(4,4))
ax = fig.add_subplot(111)
ax.scatter(n1,n2,s=60)
ax.plot(np.array([-11,11]), np.array([-11,11])*v[1,0]/v[0,0],color='k', zorder=0, lw=3)
ax.text(7,5, 'evector1', fontsize=15)
ax.plot(np.array ([-3,3]), np.array ([-3,3])*v[1,1]/v[0,1], ' -.', color='k', zorder=0)
ax.text(5,-4,'evector2', fontsize=15)
ax.set xlabel('neuron 1')
ax.set_ylabel('neuron 2')
ax.set_xlim(-11,11)
ax.set_ylim(-11,11)
plt.show()

Principal components analysis

- most data is HIGH-dimensional, how do we visualize/understand it?
- PCA is a linear dimensionality reduction technique
- The first PC is a projection that captures the MOST variance in the data
- find a low-dimensional space that preserves as much variance in the original data as possible.
- can use low-D summary and it may be more interpretable
- can also use as a pre-processing step before doing classification or regression - a low-dimensional regression has FEWER parameters so it acts as a "regularization" step

PCA derivation: (maximum variance)

$$
X=\left[\begin{array}{lll}
\vec{x}_{1} & \ldots & \vec{x}_{s}
\end{array}\right] \quad s \text { stimuli } \vec{x}_{i} \in \mathbb{R}^{n}
$$

If \vec{x}_{i} are mean 0 , then covariance $S=\frac{1}{N_{\text {stim }}} X X^{\top}$.
We want to find principal component \vec{u}_{1} that maximizes variance of projection of data onto it.

$$
\begin{aligned}
\max _{\vec{u}_{1}} \operatorname{var}_{i}\left(\vec{u}_{1}^{\top} \vec{x}_{i}\right) & =\frac{1}{N_{\text {stim }}} \Sigma_{i}\left(\vec{u}_{1}^{\top} \vec{x}_{i}\right)\left(\vec{u}_{1}^{\top} \vec{x}_{i}\right)^{\top} \\
& =\frac{1}{N_{\text {stim }}} \Sigma_{i} \vec{u}_{1}^{\top}\left(\vec{x}_{i} \vec{x}_{i}^{\top}\right) \vec{u}_{1} \\
& =\vec{u}_{1}^{\top} S \vec{u}_{1}
\end{aligned}
$$

if $\left\|\vec{u}_{1}\right\| \rightarrow \infty$, then variance will $\rightarrow \infty$. We therefore need to constrain this optimization such that the norm of $\vec{u}_{1}<\infty$. We choose $\vec{u}_{1}=1$. To do constrained optimization we use Lagrange multipliers:

$$
\begin{aligned}
\mathcal{L}\left(\vec{u}_{1}, \lambda\right) & =\vec{u}_{1}^{\top} S \vec{u}_{1}-\lambda\left(\vec{u}_{1}^{\top} \vec{u}_{1}-1\right) & & \\
\frac{\partial}{\partial \vec{u}_{1}} \mathcal{L}\left(\vec{u}_{1}, \lambda\right) & =\frac{\partial}{\partial \vec{u}_{1}}\left(\vec{u}_{1}^{\top} S \vec{u}_{1}-\lambda\left(\vec{u}_{1}^{\top} \vec{u}_{1}-1\right)\right) & & \frac{\partial}{\partial \lambda} \mathcal{L}\left(\vec{u}_{1}, \lambda\right)=\frac{\partial}{\partial \lambda}\left(\vec{u}_{1}^{\top} S \vec{u}_{1}-\lambda\left(\vec{u}_{1}^{\top} \vec{u}_{1}-1\right)\right) \\
\frac{\partial}{\partial \vec{u}_{1}} \mathcal{L}\left(\vec{u}_{1}, \lambda\right) & =2 S \vec{u}_{1}-2 \lambda \vec{u}_{1}=0 & & \frac{\partial}{\partial \lambda} \mathcal{L}\left(\vec{u}_{1}, \lambda\right)=\vec{u}_{1}^{\top} \vec{u}_{1}-1=0 \\
\Rightarrow S \vec{u}_{1} & =\lambda \vec{u}_{1} & & \Rightarrow\left\|\vec{u}_{1}\right\|^{2}=1
\end{aligned}
$$

Can you tell what \vec{u}_{1} should be to satisfy this equation?
Let \vec{u}_{1} be an eigenvector of the covariance matrix S, which eigenvector maximuizes the variance?

$$
\begin{aligned}
\max _{\vec{u}_{1}} \operatorname{var}_{i}\left(\vec{u}_{1}^{\top} \vec{x}_{i}\right) & =\vec{u}_{1}^{\top} S \vec{u}_{1} \text { where } \vec{u}_{1} \text { is an eigenvector } \\
& =\vec{u}_{1}^{\top}\left(\lambda \vec{u}_{1}\right) \\
& =\lambda \vec{u}_{1}^{\top} \vec{u}_{1}=\lambda\left\|\vec{u}_{1}\right\|^{2}=\lambda
\end{aligned}
$$

PCA: The eigenvector with the largest eigenvalue is the first principal component. The next principal components are the following eigenvectors.

PCA derivation: (minimize residuals)
Introduce D orthonormal basis vectors \vec{u}_{i} such that $\vec{u}_{i} \vec{u}_{j}=\delta_{i j}$. We can represent each neuron \vec{x}_{n} as

$$
\vec{x}_{n}=\sum_{i=1}^{D}\left(\vec{x}_{n}^{\top} \vec{u}_{i}\right) \vec{u}_{i}
$$

where each neuron is a sum of \vec{u}_{i} with weights of the projection of \vec{x}_{n} onto the vectors \vec{u}_{i}. How do we choose \vec{u}_{i} to minimize the error of the reconstruction of the original data with only M vectors?

$$
\hat{\vec{x}}_{n}=\sum_{i=1}^{M} z_{n i} \vec{u}_{i}+\sum_{i=M+1}^{D} b_{i} \vec{u}_{i}
$$

b_{i} are the same for all neurons (to make an M dimensional representation). Minimize reconstruction error:

$$
J=\frac{1}{N} \sum_{n=1}^{N}\left\|\vec{x}_{n}-\hat{\vec{x}}_{n}\right\|^{2}=\frac{1}{N} \sum_{n=1}^{N} \vec{x}_{n}^{\top} \vec{x}_{n}-2 \hat{\vec{x}}_{n} \vec{x}_{n}+\hat{\vec{x}}_{n}^{\top} \hat{\vec{x}}_{n}
$$

How do we minimize? Take derivative with respect to each variable.

$$
\begin{aligned}
\frac{\partial J}{\partial z_{n i}} & =\frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial z_{n i}}\left(-2 \hat{\vec{x}}_{n}^{\top} \vec{x}_{n}+\hat{\vec{x}}_{n}^{\top} \hat{\vec{x}}_{n}\right)=\frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial z_{n i}}\left(-2\left(\sum_{i=1}^{M} z_{n i} \vec{u}_{i}\right)^{\top} \vec{x}_{n}+\left(\sum_{i=1}^{M} z_{n i} \vec{u}_{i}\right)^{\top}\left(\sum_{i=1}^{M} z_{n i} \vec{u}_{i}\right)\right) \\
& =\frac{1}{N} \sum_{n=1}^{N}\left(-2\left(\sum_{i=1}^{M} \frac{\partial}{\partial z_{n i}} z_{n i} \vec{u}_{i}\right)^{\top} \vec{x}_{n}+\frac{\partial}{\partial z_{n i}}\left(\sum_{i=1}^{M} z_{n i} \vec{u}_{i}\right)^{\top}\left(\sum_{i=1}^{M} z_{n i} \vec{u}_{i}\right)\right)
\end{aligned}
$$

continue this as an exercise (see PRML by Bishop for help)

Singular value decomposition (is basically PCA)

Definition: Singular value decomposition of a matrix M decomposes it into 3 matrices $U \Sigma V^{\top}$ where U and V are orthonormal and Σ is diagonal. If M has only real (not complex) entries, then U, V and Σ are also real. (pic from wikipedia)

$$
M=U \cdot \Sigma \cdot V^{*}
$$

What are U and V and how do they relate to PCA?
Suppose $X=U \Sigma V^{\top}$. Compute covariance:

$$
\begin{aligned}
X X^{\top} & =\left(U \Sigma V^{\top}\right)\left(U \Sigma V^{\top}\right)^{\top} \\
& =U \Sigma V^{\top} V \Sigma^{\top} U^{\top} \\
& =U \Sigma^{2} U^{\top} \text { (because } V \text { is orthonormal) }
\end{aligned}
$$

U are the eigenvectors of $S=X X^{\top}$ which from above are the principal components. Solve for V :

$$
\begin{aligned}
X & =U \Sigma V^{\top} \\
\Sigma^{-1} U^{\top} X & =V^{\top} \\
X^{\top} U \Sigma^{-1} & =V
\end{aligned}
$$

So $V=X^{\top} U \Sigma^{-1}$, data rotated by U and then inverse scaled by Σ.

Properties of matrices

Matrix type	definition	what does it mean?
diagonalizable matrix	independent eigenvectors (no repeated eigenvalues)	$A=V \Lambda V^{-1}$
similar matrix (to A)	$B=M^{-1} A M$	same eigenvalues as A, eigenvectors rotated: $M \vec{v}$
symmetric matrix	$A=A^{\top}$	real eigenvalues and orthogonal eigenvectors $\left(V^{-1}=V^{\top}\right)$
positive semi-definite matrix	$S=A^{\top} A$	eigenvalues $\lambda \geq 0$ (with equality if columns not independent) and orthogonal eigenvectors $\left(V^{-1}=V^{\top}\right)$
covariance matrix	$S=\frac{1}{N} X X^{\top}$ where N is $\#$ of columns	positive semi-definite (see above)

