
Complex numbers

x2 + 1 = 0⇒ x = ±
√
−1 = ±i

Fundamental thm of algebra: Every real or complex polynomial of degree ”n” has ”n” roots (can be
complex AND repeated)

Example: x4 − 1 = 0 has 4 roots ⇒
x = +1,−1,+i,−i

Euler’s formula: cos(θ) + i sin(θ) = eiθ

Proof: (Taylor expansion)

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+ ... = 1− θ2

2
+ ...+ i(θ − θ3

6
+ ...)

= cos(θ) + i sin(θ)

This means that eiθe−iθ = 1
Proof:

(cos(θ) + i sin(θ))(cos(θ)− i sin(θ)) = cos2 θ + sin2 θ + i sin θ cos θ − i sin θ cos θ

= 1

Roots of unity: an nth root of unity zn = 1

exp

(
2kπi

n

)
= cos

2kπ

n
+ i sin

2kπ

n
, k = 0, 1, . . . , n− 1

Euler’s method

Differential equation governs the rate of change of a variable.

dx

dt
= −x

This example is exponential decay.

If we know x(t0) we can compute x shortly after (x(t0 + ∆t)) with an approximation:

x(t0 + ∆t) = x(t0) + ∆t
dx(t0)

dt
Example:
Find x(0.1) given x(0) = 5 using Euler’s method:

dx(t)

dt
= −x
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Eigenvalues and eigenvectors

Example:

A =

[
3 1
0 2

]
Find vectors that stay on their own span, e.g.

[
1
0

]
,

[
−1
1

]
[
3 1
0 2

] [
1
0

]
=

[
3
0

]
= 3

[
1
0

]
[
3 1
0 2

] [
−1
1

]
=

[
−2
2

]
= 2

[
−1
1

]
Example: Consider a 3D rotation, the eigenvector of the rotation is the AXIS OF ROTATION with
eigenvalue λ = 1 cos θ − sin θ 0

sin θ cos θ 0
0 0 1

0
0
1

 =

0
0
1


0

0
1

 is an eigenvector with eigenvalue 1.

A~v = λ~v, λ: eigenvalue, ~v: eigenvector

A~v = λI~v

A~v − λI~v = ~0

(A− λI)~v = ~0

Trivial solution ~v = ~0. Only other way to get zero:

det(A− λI) = 0

Example: Find eigenvalues of A =

[
3 1
0 2

]

det

([
3 1
0 2

]
− λ

[
1 0
0 1

])
= det

([
3− λ 1

0 2− λ

])
= 0

⇒ (3− λ)(2− λ) = 0

⇒ λ = 3, 2
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Example: Find eigenvalues of A =

[
0 −1
1 0

]

det

([
0 −1
1 0

]
− λ

[
1 0
0 1

])
= det

([
−λ −1
1 −λ

])
= 0

⇒ λ2 + 1 = 0

⇒ λ = +i,−i

All vectors in the REAL plane are rotated ⇒ no REAL vectors that stay on their own span.

Example: Find eigenvalues of A =

[
1 1
0 1

]

det

([
1 1
0 1

]
− λ

[
1 0
0 1

])
= det

([
1− λ 1

0 1− λ

])
= 0

⇒ (1− λ)(1− λ) = 0

⇒ λ = 1

Only ONE eigenvalue/eigenvector. Find the eigenvector:[
1 1
0 1

] [
a
b

]
= 1

[
a
b

]
⇒ a+ b = a⇒ b = 0

The eigenvector is

[
a
0

]
where a ∈ R.

Example: Find eigenvalues of A =

[
2 0
0 2

]
.

det

([
2 0
0 2

]
− λ

[
1 0
0 1

])
= det

([
2− λ 0

0 2− λ

])
= 0

⇒ (2− λ)(2− λ) = 0

⇒ λ = 2

Find the eigenvectors: [
2 0
0 2

] [
a
b

]
= 2

[
a
b

]
⇒ 2a = 2a; 2b = 2b⇒ a ∈ R, b ∈ R

All vectors are eigenvectors of diagonal matrices!

Uses of eigenvalues/eigenvectors

• dynamical systems - governs timescales

• low-dimensional representations
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Differential Equations

systems of equations governing dynamics

Example: Exponential decay
x = firing rate of a neuron, τ = timescale of neuron

dx

dt
= −x/τ (firing rate decays to zero)

⇒
∫
dx

x
=

∫
−dt
τ

⇒ ln(x) = −t/τ + c

⇒ x(t) = e−t/τ+c = e−t/τec

x(t) = ce−t/τ where c = x(0)

* neuron’s firing rate decays with timescale τ *

Example: Add another neuron as input:

dx

dt
= −x+ 2y

dy

dt
= −y + 2x

We can rewrite this as a matrix multiplication:[
dx
dt
dy
dt

]
= A

[
x
y

]
=

[
−1 2
2 −1

] [
x
y

]

Suppose the solution takes the form

[
x
y

]
=

[
a1
a2

]
eλt, what are λ and

[
a1
a2

]
?

LHS:

[
dx
dt
dy
dt

]
=

[
d
dt

(
a1e

λt
)

d
dt

(
a2e

λt
)] =

[
a1(λe

λt)
a2(λe

λt)

]
= λ

[
a1
a2

]
eλt

Plug this into the equation:

λ

[
a1
a2

]
eλt =

[
−1 2
2 −1

] [
a1
a2

]
eλt

⇒ λ

[
a1
a2

]
=

[
−1 2
2 −1

] [
a1
a2

]
Let ~v =

[
a1
a2

]
and A =

[
−1 2
2 −1

]
⇒ λ~v = A~v

What are λ and ~v =

[
a1
a2

]
?
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Find the eigenvalues:

det

([
−1 2
2 −1

]
− λ

[
1 0
0 1

])
= det

([
−1− λ 2

2 −1− λ

])
= 0

⇒ (−1− λ)(−1− λ)− 4 = 0

⇒ λ2 + 2λ− 3 = 0

⇒ (λ+ 3)(λ− 1) = 0

⇒ λ = −3,+1

Find the eigenvectors:[
−1 2
2 −1

] [
a1
a2

]
= −3

[
a1
a2

]
⇒ −a1 + 2a2 = −3a1 ⇒ a2 = −a1 ⇒

[
a1
a2

]
=

[
1
−1

]
[
−1 2
2 −1

] [
a1
a2

]
= +1

[
a1
a2

]
⇒ −a1 + 2a2 = a1 ⇒ a2 = a1 ⇒

[
a1
a2

]
=

[
1
1

]
On your own check that these are eigenvectors.

Two solutions of the differential equation:[
x
y

]
= c1e

−3t
[

1
−1

]
,

[
x
y

]
= c2e

t

[
1
1

]
Any linear combinations are also solutions, let’s check this. Let[

x
y

]
= c1e

λ1t~v1 + c2e
λ2t~v2

LHS:

[
dx
dt
dy
dt

]
= c1(λ1e

λ1t)~v1 + c2(λ2e
λ2t)~v2 = c1e

λ1t(λ1~v1) + c2e
λ2t(λ2~v2)

RHS: A(c1e
λ1t~v1 + c2e

λ1t~v2) = c1e
λ1t(A~v1) + c2e

λ2t(A~v2) = c1e
λ1t(λ1~v1) + c2e

λ2t(λ2~v2)X

Can also do it the looong way. Let [
x
y

]
= c1e

−3t
[

1
−1

]
+ c2e

t

[
1
1

]

LHS:

[
dx
dt
dy
dt

]
=

[
c1(−3)eλt + c2(1)eλt

c1(−3)(−1)eλt + c2(1)eλt

]
=

[
−3c1e

λt + c2e
λt

3c1e
λt + c2e

λt

]
RHS:

[
−1 2
2 −1

](
c1

[
1
−1

]
e−3t + c2

[
1
1

]
et
)

=

[
−3c1e

−3t + c2e
t

3c1e
−3t + c2e

t

]
X
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Theorem: If you start on an eigenvector, you STAY on an eigenvector.
”Proof”: (using Euler’s method)[

x(t+ ∆t)
y(t+ ∆t)

]
≈
[
x(t)
y(t)

]
+ ∆t

[
dx(t)
dt
dy(t)
dt

]

If

[
x(t)
y(t)

]
= ~v (eigenvector of A), then

[
dx(t)
dt
dy(t)
dt

]
= A~v = λ~v ⇒[

x(t+ ∆t)
y(t+ ∆t)

]
≈
[
x(t)
y(t)

]
+ ∆t λ

[
x(t)y(t)

]
= (1 + ∆tλ)~v

still on eigenvector

What does λ > 0 versus λ < 0 mean?
* note we can think about these neurons as ”groups of neurons” *

How can we make the system stable? (don’t want x→∞, y →∞)[
dx
dt
dy
dt

]
=

[
−3 2
2 −3

] [
x
y

]
=

([
−1 2
2 −1

]
− 2I

)[
x
y

]
The neurons will decay faster, why would this make this stable?

det(A− λI) = 0

Now subtract 2I and find new eigenvalues

det(A− 2I − λnewI) = det(A− (2 + λnew)I) = 0

⇒ 2 + λnew = λ

⇒ λnew = λ− 2

Theorem: Eigenvalues of A+ bI are λ+ b where λ are eigenvalues of A and eigenvectors are the same
as the eigenvectors of A.
Proof:

(A+ bI)~v = (λ+ b)~v

A~v + bI~v = λ~v + b~v

⇒ ~v is also an eigenvector of A+ bI

New system

[
dx
dt
dy
dt

]
=

[
−3 2
2 −3

] [
x
y

]
has eigenvalues λ = −5,−1 and eigenvectors ~v =

[
1
−1

]
,

[
1
1

]
.

How else can we prevent neurons from →∞?
add inhibitory neurons!
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Example: Inhibitory neuron

[
dx
dt
dy
dt

]
=

[
0 −1
1 0

] [
x
y

]
Which neuron in this system is the ”excitatory neuron” and which is the ”inhibitory neuron”?

Find eigenvalues (recall from video):

det

([
0 −1
1 0

]
− λ

[
1 0
0 1

])
= det

([
−λ −1
1 −λ

])
= 0

⇒ λ2 + 1 = 0

⇒ λ = +i,−i

Therefore, x and y are functions of eit = cos(t)i sin(t) ⇒ OSCILLATIONS!

Make phase diagram and show oscillation.

See what happens when λ = −1± i.
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Diagonalizing a matrix

Let A be a matrix, with λ1, λ2 eigenvalues and ~x1, ~x2 eigenvectors. Let’s multiply A with its eigenvectors:

A
[
~x1 ~x2

]
=
[
A~x1 A~x2

]
=
[
λ1~x1 λ2~x2

]
.

We can rewrite the RHS side as a matrix multiplication:[
λ1~x1 λ2~x2

]
=
[
~x1 ~x2

] [λ1 0
0 λ2

]
= V Λ

where we term the eigenvector matrix V and the diagonal matrix with the eigenvalues Λ. Now let’s
rewrite the first expression and try to diagonalize A:

AV = V Λ

Multiply by V −1 on both sides.
V −1AV = V −1V Λ = Λ

V diagonalizes A.

Can decompose A into V e’vectors and Λ e’values:

A = V ΛV −1

This also makes it easy to compute powers of A:

A2 = (V ΛV −1)(V ΛV −1) = V Λ2V −1

⇒ An = V ΛnV −1

As n → ∞, λ > 1 will dominate and therefore the transformation will tend towards its corresponding
eigenvector.

Similar matrices

Let B be similar to A: B = M−1AM and B~x = λ~x. What are the eigenvalues and eigenvectors of A?

B~x = M−1AM~x = λ~x

Multiply both sides by M

M(M−1AM)~x = M(λ~x)

⇒ A(M~x) = λ(M~x)

Same eigenvalues, eigenvectors transformed by M .
* any matrix is similar to the diagonal matrix (through eigenvectors): Λ = V −1AV *
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Symmetric matrices

Definition: A is symmetric if A = A>.

Example: Recall from last class, A =

[
−1 2
2 −1

]
has λ = −3,+1 and eigenvectors

[
1
−1

]
,

[
1
1

]
.

These eigenvalues are real numbers. These eigenvectors are also orthogonal. How do we check
orthogonality? [

1
−1

]> [
1
1

]
= 1− 1 = 0 X

Orthonormal matrices are orthogonal matrices with columns with unit norm - how do we make
V =

[
~v1 ~v2

]
have columns of unit norm?

V =
1√
2

[
1 1
−1 1

]
Prove for yourself that this works.

Theorem: Matrix V orthonormal ⇐⇒ V −1 = V >.
Proof: (right-direction) We will show for a two column matrix, but applies to an N-D matrix:

V =
[
~v1 ~v2

]
and V > =

[
~v1
~v2

]
⇒ V >V =

[
~v>1
~v>2

] [
~v1 ~v2

]
=

[
~v>1 ~v1 ~v>1 ~v2
~v>2 ~v1 ~v>2 ~v2

]
Since ~v1 and ~v2 are orthogonal, ~v>1 ~v2 = 0. Since ~v1 and ~v2 are unit norm, ~v>1 ~v1 = 1 and ~v>2 ~v2 = 1 ⇒

V >V =

[
1 0
0 1

]
= I ⇒ V > = V −1

Check for V = 1√
2

[
1 1
−1 1

]
that the inverse is the transpose.

Theorem: Symmetric matrices (A = A>) have real eigenvalues and orthogonal eigenvectors.

Proof: (for orthogonal eigenvectors)
Rewrite A as A = V ΛV −1

⇒ A> = (V ΛV −1)> = (V −1)>ΛV >

By definition,
A = A> ⇒ V ΛV −1 = (V −1)>ΛV >

How do we achieve equality for this expression? V −1 = V >

Thus, V is an orthonormal matrix ⇒ eigenvectors are orthogonal.
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Positive semi-definite matrices

Definition: S is positive semi-definite if S = A>A.

Theorem: Positive semi-definite matrices are symmetric.
Proof:

S = A>A⇒ S> = (A>A)> = A>(A>)> = A>A

⇒ S = S>

Theorem: Positive semi-definite matrices have all eigenvalues λ ≥ 0

Proof: Let λ, ~v be eigenvalues and eigenvectors of S

A>A~v = λ~v

~v>(A>A~v) = ~v>(λ~v)

~v>(A>A~v) = ~v>(λ~v)

(A~v)>(A~v) = λ~v>~v

||A~v||2 = λ||~v||2 norm is always positive

⇒ λ ≥ 0 ∀S = A>A

When will λ = 0?
* if S does not have independent columns (determinant = 0) (not full rank)*

Example: S =

[
1 1
1 1

]
, find eigenvalues λ1, λ2 and eigenvectors ~v1, ~v2.

det

([
1 1
1 1

]
− λ

[
1 0
0 1

])
= det

([
1− λ 1

1 1− λ

])
= 0

⇒ λ2 − 2λ+ 1 = 0

⇒ λ(λ− 2) = 0

⇒ λ = 0, 2[
1 1
1 1

] [
a
b

]
= 2

[
a
b

]
⇒ a+ b = 2a⇒ b = a⇒ ~v1 =

1√
2

[
1
1

]
[
1 1
1 1

] [
a
b

]
= 0

[
a
b

]
⇒ a+ b = 0⇒ b = −a⇒ ~v2 =

1√
2

[
1
−1

]
Rewrite S as diagonalization. There is a full column of zeros ⇒ ~v2 doesn’t matter:

S =
1

2

[
1
1

]
(2)

[
1
1

]>
=

[
1
1

] [
1
1

]>
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Example: 2 neurons’ firing rates in response to 6 different stimuli (normalized to zero average firing
rate). Make a matrix neurons x stimuli:

X =

[
5 −4 8 −10 1 0
7 2 7 −9 0 −3

]
=
[
~x1 ... ~x6

]
=

[
~n>1
~n>2

]
How are these neurons’ firing rates covarying?
covariance matrix

S =

[
cov(~n1, ~n1) cov(~n1, ~n2)
cov(~n2, ~n1) cov(~n2, ~n2)

]
Here are the terms in the matrix:

1

Nstim

Nstim∑
i=1

[
(xi1 − x̄1)(xi1 − x̄1) (xi1 − x̄1)(xi2 − x̄2)
(xi2 − x̄2)(xi1 − x̄1) (xi2 − x̄2)(xi2 − x̄2)

]
where i is for different stimuli. Equivalent to

1

Nstim

Nstim∑
i=1

(~xi − x̄)(~xi − x̄)>

⇒ covariance matrix S = 1
Nstim

XX> =

[
34 32
32 32

]
.

What are the eigenvalues and eigenvectors? S is positive semi-definite so λ ≥ 0.

λ = 65, 2; ~v1 =

[
0.72
0.69

]
, ~v2 =

[
−0.69
0.72

]
What do you notice when you plot these vectors?

What is the projection of X onto ~v1 and ~v2?
Stimulus response ~x1 onto eigenvector ~v1:

proj~v1~x1 =
~x>1 ~v1
||~v1||2

~v1 = (~x>1 ~v1)~v1

Normally we have thousands of neurons... what do we do?
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Principal components analysis

• most data is HIGH-dimensional, how do we visualize/understand it?

• PCA is a linear dimensionality reduction technique

• The first PC is a projection that captures the MOST variance in the data

• find a low-dimensional space that preserves as much variance in the original data as possible.

• can use low-D summary and it may be more interpretable

• can also use as a pre-processing step before doing classification or regression – a low-dimensional
regression has FEWER parameters so it acts as a ”regularization” step

PCA derivation: (maximum variance)

X =
[
~x1 ... ~xs

]
s stimuli ~xi ∈ Rn

If ~xi are mean 0, then covariance S = 1
Nstim

XX>.
We want to find principal component ~u1 that maximizes variance of projection of data onto it.

max
~u1

vari(~u
>
1 ~xi) =

1

Nstim
Σi(~u

>
1 ~xi)(~u

>
1 ~xi)

>

=
1

Nstim
Σi~u

>
1 (~xi~x

>
i )~u1

= ~u>1 S~u1

if ||~u1|| → ∞, then variance will →∞. We therefore need to constrain this optimization such that the
norm of ~u1 <∞. We choose ~u1 = 1. To do constrained optimization we use Lagrange multipliers:

L(~u1, λ) = ~u>1 S~u1 − λ(~u>1 ~u1 − 1)

∂

∂~u1
L(~u1, λ) =

∂

∂~u1

(
~u>1 S~u1 − λ(~u>1 ~u1 − 1)

) ∂

∂λ
L(~u1, λ) =

∂

∂λ

(
~u>1 S~u1 − λ(~u>1 ~u1 − 1)

)
∂

∂~u1
L(~u1, λ) = 2S~u1 − 2λ~u1 = 0

∂

∂λ
L(~u1, λ) = ~u>1 ~u1 − 1 = 0

⇒ S~u1 = λ~u1 ⇒ ||~u1||2 = 1

Can you tell what ~u1 should be to satisfy this equation?

Let ~u1 be an eigenvector of the covariance matrix S, which eigenvector maximuizes the variance?

max
~u1

vari(~u
>
1 ~xi) = ~u>1 S~u1 where ~u1 is an eigenvector

= ~u>1 (λ~u1)

= λ~u>1 ~u1 = λ||~u1||2 = λ
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PCA: The eigenvector with the largest eigenvalue is the first principal component. The next
principal components are the following eigenvectors.

PCA derivation: (minimize residuals)
Introduce D orthonormal basis vectors ~ui such that ~ui~uj = δij. We can represent each neuron ~xn as

~xn =
D∑
i=1

(~x>n ~ui)~ui

where each neuron is a sum of ~ui with weights of the projection of ~xn onto the vectors ~ui. How do we
choose ~ui to minimize the error of the reconstruction of the original data with only M vectors?

~̂xn =
M∑
i=1

zni~ui +
D∑

i=M+1

bi~ui

bi are the same for all neurons (to make an M dimensional representation). Minimize reconstruction
error:

J =
1

N

N∑
n=1

||~xn − ~̂xn||2 =
1

N

N∑
n=1

~x>n~xn − 2~̂xn~xn + ~̂x>n ~̂xn

How do we minimize? Take derivative with respect to each variable.

∂J

∂zni
=

1

N

N∑
n=1

∂

∂zni

(
−2~̂x>n~xn + ~̂x>n ~̂xn

)
=

1

N

N∑
n=1

∂

∂zni

−2

(
M∑
i=1

zni~ui

)>
~xn +

(
M∑
i=1

zni~ui

)>( M∑
i=1

zni~ui

)
=

1

N

N∑
n=1

−2

(
M∑
i=1

∂

∂zni
zni~ui

)>
~xn +

∂

∂zni

(
M∑
i=1

zni~ui

)>( M∑
i=1

zni~ui

)
...
continue this as an exercise (see PRML by Bishop for help)
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Singular value decomposition (is basically PCA)

Definition: Singular value decomposition of a matrix M decomposes it into 3 matrices UΣV > where
U and V are orthonormal and Σ is diagonal. If M has only real (not complex) entries, then U , V and
Σ are also real. (pic from wikipedia)

What are U and V and how do they relate to PCA?

Suppose X = UΣV >. Compute covariance:

XX> = (UΣV >)(UΣV >)>

= UΣV >V Σ>U>

= UΣ2U> (because V is orthonormal)

U are the eigenvectors of S = XX> which from above are the principal components.
Solve for V :

X = UΣV >

Σ−1U>X = V >

X>UΣ−1 = V

So V = X>UΣ−1, data rotated by U and then inverse scaled by Σ.
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Properties of matrices

Matrix type definition what does it mean?

diagonalizable matrix
independent eigenvectors (no
repeated eigenvalues)

A = V ΛV −1

similar matrix (to A) B = M−1AM
same eigenvalues as A, eigenvectors rotated:
M~v

symmetric matrix A = A>
real eigenvalues and orthogonal eigenvectors
(V −1 = V >)

positive semi-definite matrix S = A>A
eigenvalues λ ≥ 0 (with equality if columns
not independent) and orthogonal eigenvectors
(V −1 = V >)

covariance matrix
S = 1

N
XX> where N is #

of columns
positive semi-definite (see above)
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