Problems to prepare for eigenvalues

Note λ is a constant in all these problems.

1. Find the determinant of these matrices. If the determinant is 0 , which axis is all the data being squished onto?
$A=\left[\begin{array}{cc}3 & 1 \\ 1 & -1\end{array}\right]$
$B=\left[\begin{array}{ll}2 & 4 \\ 2 & 4\end{array}\right]$
$C=\left[\begin{array}{cc}-\lambda & -1 \\ 2 & -\lambda\end{array}\right]$
2. Find the roots of the following equations (find λ):
$\lambda^{2}+2=0$
$\lambda^{4}-1=0$
3. Compute the matrix-vector multiplications
$\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=$
$\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=$
Do you notice anything special about the results?
4. Compute the following derivatives
$\frac{d}{d t}\left(e^{\lambda t}\right)=$
$\frac{d}{d x}(\ln (x))=$
5. Compute the following integrals (anti-derivatives)
$\int \frac{d x}{x}=$
$\int \lambda d t=$
6. BONUS:

Find $x(0.1)$ given $x(0)=5$ using Euler's method:

$$
\frac{d x(t)}{d t}=-x
$$

