
1
Introduction

The problem of searching for patterns in data is a fundamental one and has a long and
successful history. For instance, the extensive astronomical observations of Tycho
Brahe in the 16th century allowed Johannes Kepler to discover the empirical laws of
planetary motion, which in turn provided a springboard for the development of clas-
sical mechanics. Similarly, the discovery of regularities in atomic spectra played a
key role in the development and verification of quantum physics in the early twenti-
eth century. The field of pattern recognition is concerned with the automatic discov-
ery of regularities in data through the use of computer algorithms and with the use of
these regularities to take actions such as classifying the data into different categories.

Consider the example of recognizing handwritten digits, illustrated in Figure 1.1.
Each digit corresponds to a 28×28 pixel image and so can be represented by a vector
x comprising 784 real numbers. The goal is to build a machine that will take such a
vector x as input and that will produce the identity of the digit 0, . . . , 9 as the output.
This is a nontrivial problem due to the wide variability of handwriting. It could be
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2 1. INTRODUCTION

Figure 1.1 Examples of hand-written dig-
its taken from US zip codes.

tackled using handcrafted rules or heuristics for distinguishing the digits based on
the shapes of the strokes, but in practice such an approach leads to a proliferation of
rules and of exceptions to the rules and so on, and invariably gives poor results.

Far better results can be obtained by adopting a machine learning approach in
which a large set of N digits {x1, . . . ,xN} called a training set is used to tune the
parameters of an adaptive model. The categories of the digits in the training set
are known in advance, typically by inspecting them individually and hand-labelling
them. We can express the category of a digit using target vector t, which represents
the identity of the corresponding digit. Suitable techniques for representing cate-
gories in terms of vectors will be discussed later. Note that there is one such target
vector t for each digit image x.

The result of running the machine learning algorithm can be expressed as a
function y(x) which takes a new digit image x as input and that generates an output
vector y, encoded in the same way as the target vectors. The precise form of the
function y(x) is determined during the training phase, also known as the learning
phase, on the basis of the training data. Once the model is trained it can then de-
termine the identity of new digit images, which are said to comprise a test set. The
ability to categorize correctly new examples that differ from those used for train-
ing is known as generalization. In practical applications, the variability of the input
vectors will be such that the training data can comprise only a tiny fraction of all
possible input vectors, and so generalization is a central goal in pattern recognition.

For most practical applications, the original input variables are typically prepro-
cessed to transform them into some new space of variables where, it is hoped, the
pattern recognition problem will be easier to solve. For instance, in the digit recogni-
tion problem, the images of the digits are typically translated and scaled so that each
digit is contained within a box of a fixed size. This greatly reduces the variability
within each digit class, because the location and scale of all the digits are now the
same, which makes it much easier for a subsequent pattern recognition algorithm
to distinguish between the different classes. This pre-processing stage is sometimes
also called feature extraction. Note that new test data must be pre-processed using
the same steps as the training data.

Pre-processing might also be performed in order to speed up computation. For
example, if the goal is real-time face detection in a high-resolution video stream,
the computer must handle huge numbers of pixels per second, and presenting these
directly to a complex pattern recognition algorithm may be computationally infeasi-
ble. Instead, the aim is to find useful features that are fast to compute, and yet that
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also preserve useful discriminatory information enabling faces to be distinguished
from non-faces. These features are then used as the inputs to the pattern recognition
algorithm. For instance, the average value of the image intensity over a rectangular
subregion can be evaluated extremely efficiently (Viola and Jones, 2004), and a set of
such features can prove very effective in fast face detection. Because the number of
such features is smaller than the number of pixels, this kind of pre-processing repre-
sents a form of dimensionality reduction. Care must be taken during pre-processing
because often information is discarded, and if this information is important to the
solution of the problem then the overall accuracy of the system can suffer.

Applications in which the training data comprises examples of the input vectors
along with their corresponding target vectors are known as supervised learning prob-
lems. Cases such as the digit recognition example, in which the aim is to assign each
input vector to one of a finite number of discrete categories, are called classification
problems. If the desired output consists of one or more continuous variables, then
the task is called regression. An example of a regression problem would be the pre-
diction of the yield in a chemical manufacturing process in which the inputs consist
of the concentrations of reactants, the temperature, and the pressure.

In other pattern recognition problems, the training data consists of a set of input
vectors x without any corresponding target values. The goal in such unsupervised
learning problems may be to discover groups of similar examples within the data,
where it is called clustering, or to determine the distribution of data within the input
space, known as density estimation, or to project the data from a high-dimensional
space down to two or three dimensions for the purpose of visualization.

Finally, the technique of reinforcement learning (Sutton and Barto, 1998) is con-
cerned with the problem of finding suitable actions to take in a given situation in
order to maximize a reward. Here the learning algorithm is not given examples of
optimal outputs, in contrast to supervised learning, but must instead discover them
by a process of trial and error. Typically there is a sequence of states and actions in
which the learning algorithm is interacting with its environment. In many cases, the
current action not only affects the immediate reward but also has an impact on the re-
ward at all subsequent time steps. For example, by using appropriate reinforcement
learning techniques a neural network can learn to play the game of backgammon to a
high standard (Tesauro, 1994). Here the network must learn to take a board position
as input, along with the result of a dice throw, and produce a strong move as the
output. This is done by having the network play against a copy of itself for perhaps a
million games. A major challenge is that a game of backgammon can involve dozens
of moves, and yet it is only at the end of the game that the reward, in the form of
victory, is achieved. The reward must then be attributed appropriately to all of the
moves that led to it, even though some moves will have been good ones and others
less so. This is an example of a credit assignment problem. A general feature of re-
inforcement learning is the trade-off between exploration, in which the system tries
out new kinds of actions to see how effective they are, and exploitation, in which
the system makes use of actions that are known to yield a high reward. Too strong
a focus on either exploration or exploitation will yield poor results. Reinforcement
learning continues to be an active area of machine learning research. However, a
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Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable x along with
the corresponding target variable
t. The green curve shows the
function sin(2πx) used to gener-
ate the data. Our goal is to pre-
dict the value of t for some new
value of x, without knowledge of
the green curve.
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detailed treatment lies beyond the scope of this book.
Although each of these tasks needs its own tools and techniques, many of the

key ideas that underpin them are common to all such problems. One of the main
goals of this chapter is to introduce, in a relatively informal way, several of the most
important of these concepts and to illustrate them using simple examples. Later in
the book we shall see these same ideas re-emerge in the context of more sophisti-
cated models that are applicable to real-world pattern recognition applications. This
chapter also provides a self-contained introduction to three important tools that will
be used throughout the book, namely probability theory, decision theory, and infor-
mation theory. Although these might sound like daunting topics, they are in fact
straightforward, and a clear understanding of them is essential if machine learning
techniques are to be used to best effect in practical applications.

1.1. Example: Polynomial Curve Fitting

We begin by introducing a simple regression problem, which we shall use as a run-
ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2πx)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x ≡ (x1, . . . , xN )T, together with corresponding observations of the values
of t, denoted t ≡ (t1, . . . , tN )T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function
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sin(2πx) and then adding a small level of random noise having a Gaussian distri-
bution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in
order to obtain the corresponding value tn. By generating data in this way, we are
capturing a property of many real data sets, namely that they possess an underlying
regularity, which we wish to learn, but that individual observations are corrupted by
random noise. This noise might arise from intrinsically stochastic (i.e. random) pro-
cesses such as radioactive decay but more typically is due to there being sources of
variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value
t̂ of the target variable for some new value x̂ of the input variable. As we shall see
later, this involves implicitly trying to discover the underlying function sin(2πx).
This is intrinsically a difficult problem as we have to generalize from a finite data
set. Furthermore the observed data are corrupted with noise, and so for a given x̂
there is uncertainty as to the appropriate value for t̂. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to
exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M∑
j=0

wjx
j (1.1)

where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
2

N∑
n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the
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Figure 1.3 The error function (1.2) corre-
sponds to (one half of) the sum of
the squares of the displacements
(shown by the vertical green bars)
of each data point from the function
y(x,w).
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function y(x,w) were to pass exactly through each training data point. The geomet-
rical interpretation of the sum-of-squares error function is illustrated in Figure 1.3.

We can solve the curve fitting problem by choosing the value of w for which
E(w) is as small as possible. Because the error function is a quadratic function of
the coefficients w, its derivatives with respect to the coefficients will be linear in the
elements of w, and so the minimization of the error function has a unique solution,
denoted by w�, which can be found in closed form. The resulting polynomial isExercise 1.1
given by the function y(x,w�).

There remains the problem of choosing the order M of the polynomial, and as
we shall see this will turn out to be an example of an important concept called model
comparison or model selection. In Figure 1.4, we show four examples of the results
of fitting polynomials having orders M = 0, 1, 3, and 9 to the data set shown in
Figure 1.2.

We notice that the constant (M = 0) and first order (M = 1) polynomials
give rather poor fits to the data and consequently rather poor representations of the
function sin(2πx). The third order (M = 3) polynomial seems to give the best fit
to the function sin(2πx) of the examples shown in Figure 1.4. When we go to a
much higher order polynomial (M = 9), we obtain an excellent fit to the training
data. In fact, the polynomial passes exactly through each data point and E(w�) = 0.
However, the fitted curve oscillates wildly and gives a very poor representation of
the function sin(2πx). This latter behaviour is known as over-fitting.

As we have noted earlier, the goal is to achieve good generalization by making
accurate predictions for new data. We can obtain some quantitative insight into the
dependence of the generalization performance on M by considering a separate test
set comprising 100 data points generated using exactly the same procedure used
to generate the training set points but with new choices for the random noise values
included in the target values. For each choice of M , we can then evaluate the residual
value of E(w�) given by (1.2) for the training data, and we can also evaluate E(w�)
for the test data set. It is sometimes more convenient to use the root-mean-square
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w�)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 � M � 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.
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Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .
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For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w�) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w� obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w� for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w�

0 0.19 0.82 0.31 0.35
w�

1 -1.27 7.99 232.37
w�

2 -25.43 -5321.83
w�

3 17.37 48568.31
w�

4 -231639.30
w�

5 640042.26
w�

6 -1061800.52
w�

7 1042400.18
w�

8 -557682.99
w�

9 125201.43
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Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9
polynomial for N = 15 data points (left plot) and N = 100 data points (right plot). We see that increasing the
size of the data set reduces the over-fitting problem.

ing polynomial function matches each of the data points exactly, but between data
points (particularly near the ends of the range) the function exhibits the large oscilla-
tions observed in Figure 1.4. Intuitively, what is happening is that the more flexible
polynomials with larger values of M are becoming increasingly tuned to the random
noise on the target values.

It is also interesting to examine the behaviour of a given model as the size of the
data set is varied, as shown in Figure 1.6. We see that, for a given model complexity,
the over-fitting problem become less severe as the size of the data set increases.
Another way to say this is that the larger the data set, the more complex (in other
words more flexible) the model that we can afford to fit to the data. One rough
heuristic that is sometimes advocated is that the number of data points should be
no less than some multiple (say 5 or 10) of the number of adaptive parameters in
the model. However, as we shall see in Chapter 3, the number of parameters is not
necessarily the most appropriate measure of model complexity.

Also, there is something rather unsatisfying about having to limit the number of
parameters in a model according to the size of the available training set. It would
seem more reasonable to choose the complexity of the model according to the com-
plexity of the problem being solved. We shall see that the least squares approach
to finding the model parameters represents a specific case of maximum likelihood
(discussed in Section 1.2.5), and that the over-fitting problem can be understood as
a general property of maximum likelihood. By adopting a Bayesian approach, theSection 3.4
over-fitting problem can be avoided. We shall see that there is no difficulty from
a Bayesian perspective in employing models for which the number of parameters
greatly exceeds the number of data points. Indeed, in a Bayesian model the effective
number of parameters adapts automatically to the size of the data set.

For the moment, however, it is instructive to continue with the current approach
and to consider how in practice we can apply it to data sets of limited size where we
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑
n=1

{y(xn,w) − tn}2 +
λ

2
‖w‖2 (1.4)

where ‖w‖2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing
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Table 1.2 Table of the coefficients w� for M =
9 polynomials with various values for
the regularization parameter λ. Note
that ln λ = −∞ corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
λ increases, the typical magnitude of
the coefficients gets smaller.

ln λ = −∞ lnλ = −18 lnλ = 0
w�

0 0.35 0.35 0.13
w�

1 232.37 4.74 -0.05
w�

2 -5321.83 -0.77 -0.06
w�

3 48568.31 -31.97 -0.05
w�

4 -231639.30 -3.89 -0.03
w�

5 640042.26 55.28 -0.02
w�

6 -1061800.52 41.32 -0.01
w�

7 1042400.18 -45.95 -0.00
w�

8 -557682.99 -91.53 0.00
w�

9 125201.43 72.68 0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by

plotting the value of the RMS error (1.3) for both training and test sets against lnλ,
as shown in Figure 1.8. We see that in effect λ now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at
length in Section 1.3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an error function, we would have to
find a way to determine a suitable value for the model complexity. The results above
suggest a simple way of achieving this, namely by taking the available data and
partitioning it into a training set, used to determine the coefficients w, and a separate
validation set, also called a hold-out set, used to optimize the model complexity
(either M or λ). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.Section 1.3

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattern
recognition by turning to a discussion of probability theory. As well as providing the
foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln λ for the M = 9
polynomial.
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give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.
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Figure 1.10 We can derive the sum and product rules of probability by
considering two random variables, X, which takes the values {xi} where
i = 1, . . . , M , and Y , which takes the values {yj} where j = 1, . . . , L.
In this illustration we have M = 5 and L = 3. If we consider a total
number N of instances of these variables, then we denote the number
of instances where X = xi and Y = yj by nij , which is the number of
points in the corresponding cell of the array. The number of points in
column i, corresponding to X = xi, is denoted by ci, and the number of
points in row j, corresponding to Y = yj , is denoted by rj .

}

}ci

rjyj

xi

nij

and the probability of selecting the blue box is 6/10. We write these probabilities
as p(B = r) = 4/10 and p(B = b) = 6/10. Note that, by definition, probabilities
must lie in the interval [0, 1]. Also, if the events are mutually exclusive and if they
include all possible outcomes (for instance, in this example the box must be either
red or blue), then we see that the probabilities for those events must sum to one.

We can now ask questions such as: “what is the overall probability that the se-
lection procedure will pick an apple?”, or “given that we have chosen an orange,
what is the probability that the box we chose was the blue one?”. We can answer
questions such as these, and indeed much more complex questions associated with
problems in pattern recognition, once we have equipped ourselves with the two el-
ementary rules of probability, known as the sum rule and the product rule. Having
obtained these rules, we shall then return to our boxes of fruit example.

In order to derive the rules of probability, consider the slightly more general ex-
ample shown in Figure 1.10 involving two random variables X and Y (which could
for instance be the Box and Fruit variables considered above). We shall suppose that
X can take any of the values xi where i = 1, . . . , M , and Y can take the values yj

where j = 1, . . . , L. Consider a total of N trials in which we sample both of the
variables X and Y , and let the number of such trials in which X = xi and Y = yj

be nij . Also, let the number of trials in which X takes the value xi (irrespective
of the value that Y takes) be denoted by ci, and similarly let the number of trials in
which Y takes the value yj be denoted by rj .

The probability that X will take the value xi and Y will take the value yj is
written p(X = xi, Y = yj) and is called the joint probability of X = xi and
Y = yj . It is given by the number of points falling in the cell i,j as a fraction of the
total number of points, and hence

p(X = xi, Y = yj) =
nij

N
. (1.5)

Here we are implicitly considering the limit N → ∞. Similarly, the probability that
X takes the value xi irrespective of the value of Y is written as p(X = xi) and is
given by the fraction of the total number of points that fall in column i, so that

p(X = xi) =
ci

N
. (1.6)

Because the number of instances in column i in Figure 1.10 is just the sum of the
number of instances in each cell of that column, we have ci =

∑
j nij and therefore,
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from (1.5) and (1.6), we have

p(X = xi) =
L∑

j=1

p(X = xi, Y = yj) (1.7)

which is the sum rule of probability. Note that p(X = xi) is sometimes called the
marginal probability, because it is obtained by marginalizing, or summing out, the
other variables (in this case Y ).

If we consider only those instances for which X = xi, then the fraction of
such instances for which Y = yj is written p(Y = yj |X = xi) and is called the
conditional probability of Y = yj given X = xi. It is obtained by finding the
fraction of those points in column i that fall in cell i,j and hence is given by

p(Y = yj |X = xi) =
nij

ci
. (1.8)

From (1.5), (1.6), and (1.8), we can then derive the following relationship

p(X = xi, Y = yj) =
nij

N
=

nij

ci
· ci

N

= p(Y = yj |X = xi)p(X = xi) (1.9)

which is the product rule of probability.
So far we have been quite careful to make a distinction between a random vari-

able, such as the box B in the fruit example, and the values that the random variable
can take, for example r if the box were the red one. Thus the probability that B takes
the value r is denoted p(B = r). Although this helps to avoid ambiguity, it leads
to a rather cumbersome notation, and in many cases there will be no need for such
pedantry. Instead, we may simply write p(B) to denote a distribution over the ran-
dom variable B, or p(r) to denote the distribution evaluated for the particular value
r, provided that the interpretation is clear from the context.

With this more compact notation, we can write the two fundamental rules of
probability theory in the following form.

The Rules of Probability

sum rule p(X) =
∑
Y

p(X, Y ) (1.10)

product rule p(X, Y ) = p(Y |X)p(X). (1.11)

Here p(X, Y ) is a joint probability and is verbalized as “the probability of X and
Y ”. Similarly, the quantity p(Y |X) is a conditional probability and is verbalized as
“the probability of Y given X”, whereas the quantity p(X) is a marginal probability
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and is simply “the probability of X”. These two simple rules form the basis for all
of the probabilistic machinery that we use throughout this book.

From the product rule, together with the symmetry property p(X, Y ) = p(Y, X),
we immediately obtain the following relationship between conditional probabilities

p(Y |X) =
p(X|Y )p(Y )

p(X)
(1.12)

which is called Bayes’ theorem and which plays a central role in pattern recognition
and machine learning. Using the sum rule, the denominator in Bayes’ theorem can
be expressed in terms of the quantities appearing in the numerator

p(X) =
∑
Y

p(X|Y )p(Y ). (1.13)

We can view the denominator in Bayes’ theorem as being the normalization constant
required to ensure that the sum of the conditional probability on the left-hand side of
(1.12) over all values of Y equals one.

In Figure 1.11, we show a simple example involving a joint distribution over two
variables to illustrate the concept of marginal and conditional distributions. Here
a finite sample of N = 60 data points has been drawn from the joint distribution
and is shown in the top left. In the top right is a histogram of the fractions of data
points having each of the two values of Y . From the definition of probability, these
fractions would equal the corresponding probabilities p(Y ) in the limit N → ∞. We
can view the histogram as a simple way to model a probability distribution given only
a finite number of points drawn from that distribution. Modelling distributions from
data lies at the heart of statistical pattern recognition and will be explored in great
detail in this book. The remaining two plots in Figure 1.11 show the corresponding
histogram estimates of p(X) and p(X|Y = 1).

Let us now return to our example involving boxes of fruit. For the moment, we
shall once again be explicit about distinguishing between the random variables and
their instantiations. We have seen that the probabilities of selecting either the red or
the blue boxes are given by

p(B = r) = 4/10 (1.14)

p(B = b) = 6/10 (1.15)

respectively. Note that these satisfy p(B = r) + p(B = b) = 1.
Now suppose that we pick a box at random, and it turns out to be the blue box.

Then the probability of selecting an apple is just the fraction of apples in the blue
box which is 3/4, and so p(F = a|B = b) = 3/4. In fact, we can write out all four
conditional probabilities for the type of fruit, given the selected box

p(F = a|B = r) = 1/4 (1.16)

p(F = o|B = r) = 3/4 (1.17)

p(F = a|B = b) = 3/4 (1.18)

p(F = o|B = b) = 1/4. (1.19)
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p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)

Figure 1.11 An illustration of a distribution over two variables, X, which takes 9 possible values, and Y , which
takes two possible values. The top left figure shows a sample of 60 points drawn from a joint probability distri-
bution over these variables. The remaining figures show histogram estimates of the marginal distributions p(X)
and p(Y ), as well as the conditional distribution p(X|Y = 1) corresponding to the bottom row in the top left
figure.

Again, note that these probabilities are normalized so that

p(F = a|B = r) + p(F = o|B = r) = 1 (1.20)

and similarly
p(F = a|B = b) + p(F = o|B = b) = 1. (1.21)

We can now use the sum and product rules of probability to evaluate the overall
probability of choosing an apple

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1
4
× 4

10
+

3
4
× 6

10
=

11
20

(1.22)

from which it follows, using the sum rule, that p(F = o) = 1 − 11/20 = 9/20.



1.2. Probability Theory 17

Suppose instead we are told that a piece of fruit has been selected and it is an
orange, and we would like to know which box it came from. This requires that
we evaluate the probability distribution over boxes conditioned on the identity of
the fruit, whereas the probabilities in (1.16)–(1.19) give the probability distribution
over the fruit conditioned on the identity of the box. We can solve the problem of
reversing the conditional probability by using Bayes’ theorem to give

p(B = r|F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

3
4
× 4

10
× 20

9
=

2
3
. (1.23)

From the sum rule, it then follows that p(B = b|F = o) = 1 − 2/3 = 1/3.
We can provide an important interpretation of Bayes’ theorem as follows. If

we had been asked which box had been chosen before being told the identity of
the selected item of fruit, then the most complete information we have available is
provided by the probability p(B). We call this the prior probability because it is the
probability available before we observe the identity of the fruit. Once we are told that
the fruit is an orange, we can then use Bayes’ theorem to compute the probability
p(B|F ), which we shall call the posterior probability because it is the probability
obtained after we have observed F . Note that in this example, the prior probability
of selecting the red box was 4/10, so that we were more likely to select the blue box
than the red one. However, once we have observed that the piece of selected fruit is
an orange, we find that the posterior probability of the red box is now 2/3, so that
it is now more likely that the box we selected was in fact the red one. This result
accords with our intuition, as the proportion of oranges is much higher in the red box
than it is in the blue box, and so the observation that the fruit was an orange provides
significant evidence favouring the red box. In fact, the evidence is sufficiently strong
that it outweighs the prior and makes it more likely that the red box was chosen
rather than the blue one.

Finally, we note that if the joint distribution of two variables factorizes into the
product of the marginals, so that p(X, Y ) = p(X)p(Y ), then X and Y are said to
be independent. From the product rule, we see that p(Y |X) = p(Y ), and so the
conditional distribution of Y given X is indeed independent of the value of X . For
instance, in our boxes of fruit example, if each box contained the same fraction of
apples and oranges, then p(F |B) = P (F ), so that the probability of selecting, say,
an apple is independent of which box is chosen.

1.2.1 Probability densities
As well as considering probabilities defined over discrete sets of events, we

also wish to consider probabilities with respect to continuous variables. We shall
limit ourselves to a relatively informal discussion. If the probability of a real-valued
variable x falling in the interval (x, x + δx) is given by p(x)δx for δx → 0, then
p(x) is called the probability density over x. This is illustrated in Figure 1.12. The
probability that x will lie in an interval (a, b) is then given by

p(x ∈ (a, b)) =
∫ b

a

p(x) dx. (1.24)
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Figure 1.12 The concept of probability for
discrete variables can be ex-
tended to that of a probability
density p(x) over a continuous
variable x and is such that the
probability of x lying in the inter-
val (x, x+δx) is given by p(x)δx
for δx → 0. The probability
density can be expressed as the
derivative of a cumulative distri-
bution function P (x).

xδx

p(x) P (x)

Because probabilities are nonnegative, and because the value of x must lie some-
where on the real axis, the probability density p(x) must satisfy the two conditions

p(x) � 0 (1.25)∫ ∞

−∞
p(x) dx = 1. (1.26)

Under a nonlinear change of variable, a probability density transforms differently
from a simple function, due to the Jacobian factor. For instance, if we consider
a change of variables x = g(y), then a function f(x) becomes f̃(y) = f(g(y)).
Now consider a probability density px(x) that corresponds to a density py(y) with
respect to the new variable y, where the suffices denote the fact that px(x) and py(y)
are different densities. Observations falling in the range (x, x + δx) will, for small
values of δx, be transformed into the range (y, y + δy) where px(x)δx � py(y)δy,
and hence

py(y) = px(x)
∣∣∣∣ dx

dy

∣∣∣∣
= px(g(y)) |g′(y)| . (1.27)

One consequence of this property is that the concept of the maximum of a probability
density is dependent on the choice of variable.Exercise 1.4

The probability that x lies in the interval (−∞, z) is given by the cumulative
distribution function defined by

P (z) =
∫ z

−∞
p(x) dx (1.28)

which satisfies P ′(x) = p(x), as shown in Figure 1.12.
If we have several continuous variables x1, . . . , xD, denoted collectively by the

vector x, then we can define a joint probability density p(x) = p(x1, . . . , xD) such
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that the probability of x falling in an infinitesimal volume δx containing the point x
is given by p(x)δx. This multivariate probability density must satisfy

p(x) � 0 (1.29)∫
p(x) dx = 1 (1.30)

in which the integral is taken over the whole of x space. We can also consider joint
probability distributions over a combination of discrete and continuous variables.

Note that if x is a discrete variable, then p(x) is sometimes called a probability
mass function because it can be regarded as a set of ‘probability masses’ concentrated
at the allowed values of x.

The sum and product rules of probability, as well as Bayes’ theorem, apply
equally to the case of probability densities, or to combinations of discrete and con-
tinuous variables. For instance, if x and y are two real variables, then the sum and
product rules take the form

p(x) =
∫

p(x, y) dy (1.31)

p(x, y) = p(y|x)p(x). (1.32)

A formal justification of the sum and product rules for continuous variables (Feller,
1966) requires a branch of mathematics called measure theory and lies outside the
scope of this book. Its validity can be seen informally, however, by dividing each
real variable into intervals of width ∆ and considering the discrete probability dis-
tribution over these intervals. Taking the limit ∆ → 0 then turns sums into integrals
and gives the desired result.

1.2.2 Expectations and covariances
One of the most important operations involving probabilities is that of finding

weighted averages of functions. The average value of some function f(x) under a
probability distribution p(x) is called the expectation of f(x) and will be denoted by
E[f ]. For a discrete distribution, it is given by

E[f ] =
∑

x

p(x)f(x) (1.33)

so that the average is weighted by the relative probabilities of the different values
of x. In the case of continuous variables, expectations are expressed in terms of an
integration with respect to the corresponding probability density

E[f ] =
∫

p(x)f(x) dx. (1.34)

In either case, if we are given a finite number N of points drawn from the probability
distribution or probability density, then the expectation can be approximated as a
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finite sum over these points

E[f ] � 1
N

N∑
n=1

f(xn). (1.35)

We shall make extensive use of this result when we discuss sampling methods in
Chapter 11. The approximation in (1.35) becomes exact in the limit N → ∞.

Sometimes we will be considering expectations of functions of several variables,
in which case we can use a subscript to indicate which variable is being averaged
over, so that for instance

Ex[f(x, y)] (1.36)

denotes the average of the function f(x, y) with respect to the distribution of x. Note
that Ex[f(x, y)] will be a function of y.

We can also consider a conditional expectation with respect to a conditional
distribution, so that

Ex[f |y] =
∑

x

p(x|y)f(x) (1.37)

with an analogous definition for continuous variables.
The variance of f(x) is defined by

var[f ] = E
[
(f(x) − E[f(x)])2

]
(1.38)

and provides a measure of how much variability there is in f(x) around its mean
value E[f(x)]. Expanding out the square, we see that the variance can also be written
in terms of the expectations of f(x) and f(x)2Exercise 1.5

var[f ] = E[f(x)2] − E[f(x)]2. (1.39)

In particular, we can consider the variance of the variable x itself, which is given by

var[x] = E[x2] − E[x]2. (1.40)

For two random variables x and y, the covariance is defined by

cov[x, y] = Ex,y [{x − E[x]} {y − E[y]}]
= Ex,y[xy] − E[x]E[y] (1.41)

which expresses the extent to which x and y vary together. If x and y are indepen-
dent, then their covariance vanishes.Exercise 1.6

In the case of two vectors of random variables x and y, the covariance is a matrix

cov[x,y] = Ex,y

[{x − E[x]}{yT − E[yT]}]
= Ex,y[xyT] − E[x]E[yT]. (1.42)

If we consider the covariance of the components of a vector x with each other, then
we use a slightly simpler notation cov[x] ≡ cov[x,x].
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1.2.3 Bayesian probabilities
So far in this chapter, we have viewed probabilities in terms of the frequencies

of random, repeatable events. We shall refer to this as the classical or frequentist
interpretation of probability. Now we turn to the more general Bayesian view, in
which probabilities provide a quantification of uncertainty.

Consider an uncertain event, for example whether the moon was once in its own
orbit around the sun, or whether the Arctic ice cap will have disappeared by the end
of the century. These are not events that can be repeated numerous times in order
to define a notion of probability as we did earlier in the context of boxes of fruit.
Nevertheless, we will generally have some idea, for example, of how quickly we
think the polar ice is melting. If we now obtain fresh evidence, for instance from a
new Earth observation satellite gathering novel forms of diagnostic information, we
may revise our opinion on the rate of ice loss. Our assessment of such matters will
affect the actions we take, for instance the extent to which we endeavour to reduce
the emission of greenhouse gasses. In such circumstances, we would like to be able
to quantify our expression of uncertainty and make precise revisions of uncertainty in
the light of new evidence, as well as subsequently to be able to take optimal actions
or decisions as a consequence. This can all be achieved through the elegant, and very
general, Bayesian interpretation of probability.

The use of probability to represent uncertainty, however, is not an ad-hoc choice,
but is inevitable if we are to respect common sense while making rational coherent
inferences. For instance, Cox (1946) showed that if numerical values are used to
represent degrees of belief, then a simple set of axioms encoding common sense
properties of such beliefs leads uniquely to a set of rules for manipulating degrees of
belief that are equivalent to the sum and product rules of probability. This provided
the first rigorous proof that probability theory could be regarded as an extension of
Boolean logic to situations involving uncertainty (Jaynes, 2003). Numerous other
authors have proposed different sets of properties or axioms that such measures of
uncertainty should satisfy (Ramsey, 1931; Good, 1950; Savage, 1961; deFinetti,
1970; Lindley, 1982). In each case, the resulting numerical quantities behave pre-
cisely according to the rules of probability. It is therefore natural to refer to these
quantities as (Bayesian) probabilities.

In the field of pattern recognition, too, it is helpful to have a more general no-

Thomas Bayes
1701–1761

Thomas Bayes was born in Tun-
bridge Wells and was a clergyman
as well as an amateur scientist and
a mathematician. He studied logic
and theology at Edinburgh Univer-
sity and was elected Fellow of the

Royal Society in 1742. During the 18th century, is-
sues regarding probability arose in connection with

gambling and with the new concept of insurance. One
particularly important problem concerned so-called in-
verse probability. A solution was proposed by Thomas
Bayes in his paper ‘Essay towards solving a problem
in the doctrine of chances’, which was published in
1764, some three years after his death, in the Philo-
sophical Transactions of the Royal Society. In fact,
Bayes only formulated his theory for the case of a uni-
form prior, and it was Pierre-Simon Laplace who inde-
pendently rediscovered the theory in general form and
who demonstrated its broad applicability.
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tion of probability. Consider the example of polynomial curve fitting discussed in
Section 1.1. It seems reasonable to apply the frequentist notion of probability to the
random values of the observed variables tn. However, we would like to address and
quantify the uncertainty that surrounds the appropriate choice for the model param-
eters w. We shall see that, from a Bayesian perspective, we can use the machinery
of probability theory to describe the uncertainty in model parameters such as w, or
indeed in the choice of model itself.

Bayes’ theorem now acquires a new significance. Recall that in the boxes of fruit
example, the observation of the identity of the fruit provided relevant information
that altered the probability that the chosen box was the red one. In that example,
Bayes’ theorem was used to convert a prior probability into a posterior probability
by incorporating the evidence provided by the observed data. As we shall see in
detail later, we can adopt a similar approach when making inferences about quantities
such as the parameters w in the polynomial curve fitting example. We capture our
assumptions about w, before observing the data, in the form of a prior probability
distribution p(w). The effect of the observed data D = {t1, . . . , tN} is expressed
through the conditional probability p(D|w), and we shall see later, in Section 1.2.5,
how this can be represented explicitly. Bayes’ theorem, which takes the form

p(w|D) =
p(D|w)p(w)

p(D)
(1.43)

then allows us to evaluate the uncertainty in w after we have observed D in the form
of the posterior probability p(w|D).

The quantity p(D|w) on the right-hand side of Bayes’ theorem is evaluated for
the observed data set D and can be viewed as a function of the parameter vector
w, in which case it is called the likelihood function. It expresses how probable the
observed data set is for different settings of the parameter vector w. Note that the
likelihood is not a probability distribution over w, and its integral with respect to w
does not (necessarily) equal one.

Given this definition of likelihood, we can state Bayes’ theorem in words

posterior ∝ likelihood × prior (1.44)

where all of these quantities are viewed as functions of w. The denominator in
(1.43) is the normalization constant, which ensures that the posterior distribution
on the left-hand side is a valid probability density and integrates to one. Indeed,
integrating both sides of (1.43) with respect to w, we can express the denominator
in Bayes’ theorem in terms of the prior distribution and the likelihood function

p(D) =
∫

p(D|w)p(w) dw. (1.45)

In both the Bayesian and frequentist paradigms, the likelihood function p(D|w)
plays a central role. However, the manner in which it is used is fundamentally dif-
ferent in the two approaches. In a frequentist setting, w is considered to be a fixed
parameter, whose value is determined by some form of ‘estimator’, and error bars
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on this estimate are obtained by considering the distribution of possible data sets D.
By contrast, from the Bayesian viewpoint there is only a single data set D (namely
the one that is actually observed), and the uncertainty in the parameters is expressed
through a probability distribution over w.

A widely used frequentist estimator is maximum likelihood, in which w is set
to the value that maximizes the likelihood function p(D|w). This corresponds to
choosing the value of w for which the probability of the observed data set is maxi-
mized. In the machine learning literature, the negative log of the likelihood function
is called an error function. Because the negative logarithm is a monotonically de-
creasing function, maximizing the likelihood is equivalent to minimizing the error.

One approach to determining frequentist error bars is the bootstrap (Efron, 1979;
Hastie et al., 2001), in which multiple data sets are created as follows. Suppose our
original data set consists of N data points X = {x1, . . . ,xN}. We can create a new
data set XB by drawing N points at random from X, with replacement, so that some
points in X may be replicated in XB, whereas other points in X may be absent from
XB. This process can be repeated L times to generate L data sets each of size N and
each obtained by sampling from the original data set X. The statistical accuracy of
parameter estimates can then be evaluated by looking at the variability of predictions
between the different bootstrap data sets.

One advantage of the Bayesian viewpoint is that the inclusion of prior knowl-
edge arises naturally. Suppose, for instance, that a fair-looking coin is tossed three
times and lands heads each time. A classical maximum likelihood estimate of the
probability of landing heads would give 1, implying that all future tosses will landSection 2.1
heads! By contrast, a Bayesian approach with any reasonable prior will lead to a
much less extreme conclusion.

There has been much controversy and debate associated with the relative mer-
its of the frequentist and Bayesian paradigms, which have not been helped by the
fact that there is no unique frequentist, or even Bayesian, viewpoint. For instance,
one common criticism of the Bayesian approach is that the prior distribution is of-
ten selected on the basis of mathematical convenience rather than as a reflection of
any prior beliefs. Even the subjective nature of the conclusions through their de-
pendence on the choice of prior is seen by some as a source of difficulty. Reducing
the dependence on the prior is one motivation for so-called noninformative priors.Section 2.4.3
However, these lead to difficulties when comparing different models, and indeed
Bayesian methods based on poor choices of prior can give poor results with high
confidence. Frequentist evaluation methods offer some protection from such prob-
lems, and techniques such as cross-validation remain useful in areas such as modelSection 1.3
comparison.

This book places a strong emphasis on the Bayesian viewpoint, reflecting the
huge growth in the practical importance of Bayesian methods in the past few years,
while also discussing useful frequentist concepts as required.

Although the Bayesian framework has its origins in the 18th century, the prac-
tical application of Bayesian methods was for a long time severely limited by the
difficulties in carrying through the full Bayesian procedure, particularly the need to
marginalize (sum or integrate) over the whole of parameter space, which, as we shall
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see, is required in order to make predictions or to compare different models. The
development of sampling methods, such as Markov chain Monte Carlo (discussed in
Chapter 11) along with dramatic improvements in the speed and memory capacity
of computers, opened the door to the practical use of Bayesian techniques in an im-
pressive range of problem domains. Monte Carlo methods are very flexible and can
be applied to a wide range of models. However, they are computationally intensive
and have mainly been used for small-scale problems.

More recently, highly efficient deterministic approximation schemes such as
variational Bayes and expectation propagation (discussed in Chapter 10) have been
developed. These offer a complementary alternative to sampling methods and have
allowed Bayesian techniques to be used in large-scale applications (Blei et al., 2003).

1.2.4 The Gaussian distribution
We shall devote the whole of Chapter 2 to a study of various probability dis-

tributions and their key properties. It is convenient, however, to introduce here one
of the most important probability distributions for continuous variables, called the
normal or Gaussian distribution. We shall make extensive use of this distribution in
the remainder of this chapter and indeed throughout much of the book.

For the case of a single real-valued variable x, the Gaussian distribution is de-
fined by

N (
x|µ, σ2

)
=

1
(2πσ2)1/2

exp
{
− 1

2σ2
(x − µ)2

}
(1.46)

which is governed by two parameters: µ, called the mean, and σ2, called the vari-
ance. The square root of the variance, given by σ, is called the standard deviation,
and the reciprocal of the variance, written as β = 1/σ2, is called the precision. We
shall see the motivation for these terms shortly. Figure 1.13 shows a plot of the
Gaussian distribution.

From the form of (1.46) we see that the Gaussian distribution satisfies

N (x|µ, σ2) > 0. (1.47)

Also it is straightforward to show that the Gaussian is normalized, so thatExercise 1.7

Pierre-Simon Laplace
1749–1827
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reduced to calculation”. This work included a discus-
sion of the inverse probability calculation (later termed
Bayes’ theorem by Poincaré), which he used to solve
problems in life expectancy, jurisprudence, planetary
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Figure 1.13 Plot of the univariate Gaussian
showing the mean µ and the
standard deviation σ.

N (x|µ, σ2)

x

2σ

µ

∫ ∞

−∞
N (

x|µ, σ2
)

dx = 1. (1.48)

Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞

−∞
N (

x|µ, σ2
)
xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
N (

x|µ, σ2
)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.
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Figure 1.14 Illustration of the likelihood function for
a Gaussian distribution, shown by the
red curve. Here the black points de-
note a data set of values {xn}, and
the likelihood function given by (1.53)
corresponds to the product of the blue
values. Maximizing the likelihood in-
volves adjusting the mean and vari-
ance of the Gaussian so as to maxi-
mize this product.

x

p(x)

xn

N (xn|µ, σ2)

Now suppose that we have a data set of observations x = (x1, . . . , xN )T, rep-
resenting N observations of the scalar variable x. Note that we are using the type-
face x to distinguish this from a single observation of the vector-valued variable
(x1, . . . , xD)T, which we denote by x. We shall suppose that the observations are
drawn independently from a Gaussian distribution whose mean µ and variance σ2

are unknown, and we would like to determine these parameters from the data set.
Data points that are drawn independently from the same distribution are said to be
independent and identically distributed, which is often abbreviated to i.i.d. We have
seen that the joint probability of two independent events is given by the product of
the marginal probabilities for each event separately. Because our data set x is i.i.d.,
we can therefore write the probability of the data set, given µ and σ2, in the form

p(x|µ, σ2) =
N∏

n=1

N (
xn|µ, σ2

)
. (1.53)

When viewed as a function of µ and σ2, this is the likelihood function for the Gaus-
sian and is interpreted diagrammatically in Figure 1.14.

One common criterion for determining the parameters in a probability distribu-
tion using an observed data set is to find the parameter values that maximize the
likelihood function. This might seem like a strange criterion because, from our fore-
going discussion of probability theory, it would seem more natural to maximize the
probability of the parameters given the data, not the probability of the data given the
parameters. In fact, these two criteria are related, as we shall discuss in the context
of curve fitting.Section 1.2.5

For the moment, however, we shall determine values for the unknown parame-
ters µ and σ2 in the Gaussian by maximizing the likelihood function (1.53). In prac-
tice, it is more convenient to maximize the log of the likelihood function. Because
the logarithm is a monotonically increasing function of its argument, maximization
of the log of a function is equivalent to maximization of the function itself. Taking
the log not only simplifies the subsequent mathematical analysis, but it also helps
numerically because the product of a large number of small probabilities can easily
underflow the numerical precision of the computer, and this is resolved by computing
instead the sum of the log probabilities. From (1.46) and (1.53), the log likelihood
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function can be written in the form

ln p
(
x|µ, σ2

)
= − 1

2σ2

N∑
n=1

(xn − µ)2 − N

2
lnσ2 − N

2
ln(2π). (1.54)

Maximizing (1.54) with respect to µ, we obtain the maximum likelihood solution
given byExercise 1.11

µML =
1
N

N∑
n=1

xn (1.55)

which is the sample mean, i.e., the mean of the observed values {xn}. Similarly,
maximizing (1.54) with respect to σ2, we obtain the maximum likelihood solution
for the variance in the form

σ2
ML =

1
N

N∑
n=1

(xn − µML)2 (1.56)

which is the sample variance measured with respect to the sample mean µML. Note
that we are performing a joint maximization of (1.54) with respect to µ and σ2, but
in the case of the Gaussian distribution the solution for µ decouples from that for σ2

so that we can first evaluate (1.55) and then subsequently use this result to evaluate
(1.56).

Later in this chapter, and also in subsequent chapters, we shall highlight the sig-
nificant limitations of the maximum likelihood approach. Here we give an indication
of the problem in the context of our solutions for the maximum likelihood param-
eter settings for the univariate Gaussian distribution. In particular, we shall show
that the maximum likelihood approach systematically underestimates the variance
of the distribution. This is an example of a phenomenon called bias and is related
to the problem of over-fitting encountered in the context of polynomial curve fitting.Section 1.1
We first note that the maximum likelihood solutions µML and σ2

ML are functions of
the data set values x1, . . . , xN . Consider the expectations of these quantities with
respect to the data set values, which themselves come from a Gaussian distribution
with parameters µ and σ2. It is straightforward to show thatExercise 1.12

E[µML] = µ (1.57)

E[σ2
ML] =

(
N − 1

N

)
σ2 (1.58)

so that on average the maximum likelihood estimate will obtain the correct mean but
will underestimate the true variance by a factor (N − 1)/N . The intuition behind
this result is given by Figure 1.15.

From (1.58) it follows that the following estimate for the variance parameter is
unbiased

σ̃2 =
N

N − 1
σ2

ML =
1

N − 1

N∑
n=1

(xn − µML)2. (1.59)
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Figure 1.15 Illustration of how bias arises in using max-
imum likelihood to determine the variance
of a Gaussian. The green curve shows
the true Gaussian distribution from which
data is generated, and the three red curves
show the Gaussian distributions obtained
by fitting to three data sets, each consist-
ing of two data points shown in blue, us-
ing the maximum likelihood results (1.55)
and (1.56). Averaged across the three data
sets, the mean is correct, but the variance
is systematically under-estimated because
it is measured relative to the sample mean
and not relative to the true mean.

(a)

(b)

(c)

In Section 10.1.3, we shall see how this result arises automatically when we adopt a
Bayesian approach.

Note that the bias of the maximum likelihood solution becomes less significant
as the number N of data points increases, and in the limit N → ∞ the maximum
likelihood solution for the variance equals the true variance of the distribution that
generated the data. In practice, for anything other than small N , this bias will not
prove to be a serious problem. However, throughout this book we shall be interested
in more complex models with many parameters, for which the bias problems asso-
ciated with maximum likelihood will be much more severe. In fact, as we shall see,
the issue of bias in maximum likelihood lies at the root of the over-fitting problem
that we encountered earlier in the context of polynomial curve fitting.

1.2.5 Curve fitting re-visited
We have seen how the problem of polynomial curve fitting can be expressed in

terms of error minimization. Here we return to the curve fitting example and view itSection 1.1
from a probabilistic perspective, thereby gaining some insights into error functions
and regularization, as well as taking us towards a full Bayesian treatment.

The goal in the curve fitting problem is to be able to make predictions for the
target variable t given some new value of the input variable x on the basis of a set of
training data comprising N input values x = (x1, . . . , xN )T and their corresponding
target values t = (t1, . . . , tN )T. We can express our uncertainty over the value of
the target variable using a probability distribution. For this purpose, we shall assume
that, given the value of x, the corresponding value of t has a Gaussian distribution
with a mean equal to the value y(x,w) of the polynomial curve given by (1.1). Thus
we have

p(t|x,w, β) = N (
t|y(x,w), β−1

)
(1.60)

where, for consistency with the notation in later chapters, we have defined a preci-
sion parameter β corresponding to the inverse variance of the distribution. This is
illustrated schematically in Figure 1.16.
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Figure 1.16 Schematic illustration of a Gaus-
sian conditional distribution for t given x given by
(1.60), in which the mean is given by the polyno-
mial function y(x,w), and the precision is given
by the parameter β, which is related to the vari-
ance by β−1 = σ2.

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)

We now use the training data {x, t} to determine the values of the unknown
parameters w and β by maximum likelihood. If the data are assumed to be drawn
independently from the distribution (1.60), then the likelihood function is given by

p(t|x,w, β) =
N∏

n=1

N (
tn|y(xn,w), β−1

)
. (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the
form

ln p(t|x,w, β) = −β

2

N∑
n=1

{y(xn,w) − tn}2 +
N

2
ln β − N

2
ln(2π). (1.62)

Consider first the determination of the maximum likelihood solution for the polyno-
mial coefficients, which will be denoted by wML. These are determined by maxi-
mizing (1.62) with respect to w. For this purpose, we can omit the last two terms
on the right-hand side of (1.62) because they do not depend on w. Also, we note
that scaling the log likelihood by a positive constant coefficient does not alter the
location of the maximum with respect to w, and so we can replace the coefficient
β/2 with 1/2. Finally, instead of maximizing the log likelihood, we can equivalently
minimize the negative log likelihood. We therefore see that maximizing likelihood is
equivalent, so far as determining w is concerned, to minimizing the sum-of-squares
error function defined by (1.2). Thus the sum-of-squares error function has arisen as
a consequence of maximizing likelihood under the assumption of a Gaussian noise
distribution.

We can also use maximum likelihood to determine the precision parameter β of
the Gaussian conditional distribution. Maximizing (1.62) with respect to β gives

1
βML

=
1
N

N∑
n=1

{y(xn,wML) − tn}2
. (1.63)



30 1. INTRODUCTION

Again we can first determine the parameter vector wML governing the mean and sub-
sequently use this to find the precision βML as was the case for the simple Gaussian
distribution.Section 1.2.4

Having determined the parameters w and β, we can now make predictions for
new values of x. Because we now have a probabilistic model, these are expressed
in terms of the predictive distribution that gives the probability distribution over t,
rather than simply a point estimate, and is obtained by substituting the maximum
likelihood parameters into (1.60) to give

p(t|x,wML, βML) = N (
t|y(x,wML), β−1

ML

)
. (1.64)

Now let us take a step towards a more Bayesian approach and introduce a prior
distribution over the polynomial coefficients w. For simplicity, let us consider a
Gaussian distribution of the form

p(w|α) = N (w|0, α−1I) =
( α

2π

)(M+1)/2

exp
{
−α

2
wTw

}
(1.65)

where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of

β

2

N∑
n=1

{y(xn,w) − tn}2 +
α

2
wTw. (1.67)

Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w|α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
of probability, which requires, as we shall see shortly, that we integrate over all val-
ues of w. Such marginalizations lie at the heart of Bayesian methods for pattern
recognition.
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In the curve fitting problem, we are given the training data x and t, along with
a new test point x, and our goal is to predict the value of t. We therefore wish
to evaluate the predictive distribution p(t|x, x, t). Here we shall assume that the
parameters α and β are fixed and known in advance (in later chapters we shall discuss
how such parameters can be inferred from data in a Bayesian setting).

A Bayesian treatment simply corresponds to a consistent application of the sum
and product rules of probability, which allow the predictive distribution to be written
in the form

p(t|x, x, t) =
∫

p(t|x,w)p(w|x, t) dw. (1.68)

Here p(t|x,w) is given by (1.60), and we have omitted the dependence on α and
β to simplify the notation. Here p(w|x, t) is the posterior distribution over param-
eters, and can be found by normalizing the right-hand side of (1.66). We shall see
in Section 3.3 that, for problems such as the curve-fitting example, this posterior
distribution is a Gaussian and can be evaluated analytically. Similarly, the integra-
tion in (1.68) can also be performed analytically with the result that the predictive
distribution is given by a Gaussian of the form

p(t|x, x, t) = N (
t|m(x), s2(x)

)
(1.69)

where the mean and variance are given by

m(x) = βφ(x)TS
N∑

n=1

φ(xn)tn (1.70)

s2(x) = β−1 + φ(x)TSφ(x). (1.71)

Here the matrix S is given by

S−1 = αI + β

N∑
n=1

φ(xn)φ(x)T (1.72)

where I is the unit matrix, and we have defined the vector φ(x) with elements
φi(x) = xi for i = 0, . . . , M .

We see that the variance, as well as the mean, of the predictive distribution in
(1.69) is dependent on x. The first term in (1.71) represents the uncertainty in the
predicted value of t due to the noise on the target variables and was expressed already
in the maximum likelihood predictive distribution (1.64) through β−1

ML. However, the
second term arises from the uncertainty in the parameters w and is a consequence
of the Bayesian treatment. The predictive distribution for the synthetic sinusoidal
regression problem is illustrated in Figure 1.17.
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Figure 1.17 The predictive distribution result-
ing from a Bayesian treatment of
polynomial curve fitting using an
M = 9 polynomial, with the fixed
parameters α = 5× 10−3 and β =
11.1 (corresponding to the known
noise variance), in which the red
curve denotes the mean of the
predictive distribution and the red
region corresponds to ±1 stan-
dard deviation around the mean.
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1.3. Model Selection

In our example of polynomial curve fitting using least squares, we saw that there was
an optimal order of polynomial that gave the best generalization. The order of the
polynomial controls the number of free parameters in the model and thereby governs
the model complexity. With regularized least squares, the regularization coefficient
λ also controls the effective complexity of the model, whereas for more complex
models, such as mixture distributions or neural networks there may be multiple pa-
rameters governing complexity. In a practical application, we need to determine
the values of such parameters, and the principal objective in doing so is usually to
achieve the best predictive performance on new data. Furthermore, as well as find-
ing the appropriate values for complexity parameters within a given model, we may
wish to consider a range of different types of model in order to find the best one for
our particular application.

We have already seen that, in the maximum likelihood approach, the perfor-
mance on the training set is not a good indicator of predictive performance on un-
seen data due to the problem of over-fitting. If data is plentiful, then one approach is
simply to use some of the available data to train a range of models, or a given model
with a range of values for its complexity parameters, and then to compare them on
independent data, sometimes called a validation set, and select the one having the
best predictive performance. If the model design is iterated many times using a lim-
ited size data set, then some over-fitting to the validation data can occur and so it may
be necessary to keep aside a third test set on which the performance of the selected
model is finally evaluated.

In many applications, however, the supply of data for training and testing will be
limited, and in order to build good models, we wish to use as much of the available
data as possible for training. However, if the validation set is small, it will give a
relatively noisy estimate of predictive performance. One solution to this dilemma is
to use cross-validation, which is illustrated in Figure 1.18. This allows a proportion
(S − 1)/S of the available data to be used for training while making use of all of the
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Figure 1.18 The technique of S-fold cross-validation, illus-
trated here for the case of S = 4, involves tak-
ing the available data and partitioning it into S
groups (in the simplest case these are of equal
size). Then S − 1 of the groups are used to train
a set of models that are then evaluated on the re-
maining group. This procedure is then repeated
for all S possible choices for the held-out group,
indicated here by the red blocks, and the perfor-
mance scores from the S runs are then averaged.

run 1

run 2

run 3

run 4

data to assess performance. When data is particularly scarce, it may be appropriate
to consider the case S = N , where N is the total number of data points, which gives
the leave-one-out technique.

One major drawback of cross-validation is that the number of training runs that
must be performed is increased by a factor of S, and this can prove problematic for
models in which the training is itself computationally expensive. A further problem
with techniques such as cross-validation that use separate data to assess performance
is that we might have multiple complexity parameters for a single model (for in-
stance, there might be several regularization parameters). Exploring combinations
of settings for such parameters could, in the worst case, require a number of training
runs that is exponential in the number of parameters. Clearly, we need a better ap-
proach. Ideally, this should rely only on the training data and should allow multiple
hyperparameters and model types to be compared in a single training run. We there-
fore need to find a measure of performance which depends only on the training data
and which does not suffer from bias due to over-fitting.

Historically various ‘information criteria’ have been proposed that attempt to
correct for the bias of maximum likelihood by the addition of a penalty term to
compensate for the over-fitting of more complex models. For example, the Akaike
information criterion, or AIC (Akaike, 1974), chooses the model for which the quan-
tity

ln p(D|wML) − M (1.73)

is largest. Here p(D|wML) is the best-fit log likelihood, and M is the number of
adjustable parameters in the model. A variant of this quantity, called the Bayesian
information criterion, or BIC, will be discussed in Section 4.4.1. Such criteria do
not take account of the uncertainty in the model parameters, however, and in practice
they tend to favour overly simple models. We therefore turn in Section 3.4 to a fully
Bayesian approach where we shall see how complexity penalties arise in a natural
and principled way.

1.4. The Curse of Dimensionality

In the polynomial curve fitting example we had just one input variable x. For prac-
tical applications of pattern recognition, however, we will have to deal with spaces



34 1. INTRODUCTION

Figure 1.19 Scatter plot of the oil flow data
for input variables x6 and x7, in
which red denotes the ‘homoge-
nous’ class, green denotes the
‘annular’ class, and blue denotes
the ‘laminar’ class. Our goal is
to classify the new test point de-
noted by ‘×’.
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of high dimensionality comprising many input variables. As we now discuss, this
poses some serious challenges and is an important factor influencing the design of
pattern recognition techniques.

In order to illustrate the problem we consider a synthetically generated data set
representing measurements taken from a pipeline containing a mixture of oil, wa-
ter, and gas (Bishop and James, 1993). These three materials can be present in one
of three different geometrical configurations known as ‘homogenous’, ‘annular’, and
‘laminar’, and the fractions of the three materials can also vary. Each data point com-
prises a 12-dimensional input vector consisting of measurements taken with gamma
ray densitometers that measure the attenuation of gamma rays passing along nar-
row beams through the pipe. This data set is described in detail in Appendix A.
Figure 1.19 shows 100 points from this data set on a plot showing two of the mea-
surements x6 and x7 (the remaining ten input values are ignored for the purposes of
this illustration). Each data point is labelled according to which of the three geomet-
rical classes it belongs to, and our goal is to use this data as a training set in order to
be able to classify a new observation (x6, x7), such as the one denoted by the cross
in Figure 1.19. We observe that the cross is surrounded by numerous red points, and
so we might suppose that it belongs to the red class. However, there are also plenty
of green points nearby, so we might think that it could instead belong to the green
class. It seems unlikely that it belongs to the blue class. The intuition here is that the
identity of the cross should be determined more strongly by nearby points from the
training set and less strongly by more distant points. In fact, this intuition turns out
to be reasonable and will be discussed more fully in later chapters.

How can we turn this intuition into a learning algorithm? One very simple ap-
proach would be to divide the input space into regular cells, as indicated in Fig-
ure 1.20. When we are given a test point and we wish to predict its class, we first
decide which cell it belongs to, and we then find all of the training data points that
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Figure 1.20 Illustration of a simple approach
to the solution of a classification
problem in which the input space
is divided into cells and any new
test point is assigned to the class
that has a majority number of rep-
resentatives in the same cell as
the test point. As we shall see
shortly, this simplistic approach
has some severe shortcomings.
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fall in the same cell. The identity of the test point is predicted as being the same
as the class having the largest number of training points in the same cell as the test
point (with ties being broken at random).

There are numerous problems with this naive approach, but one of the most se-
vere becomes apparent when we consider its extension to problems having larger
numbers of input variables, corresponding to input spaces of higher dimensionality.
The origin of the problem is illustrated in Figure 1.21, which shows that, if we divide
a region of a space into regular cells, then the number of such cells grows exponen-
tially with the dimensionality of the space. The problem with an exponentially large
number of cells is that we would need an exponentially large quantity of training data
in order to ensure that the cells are not empty. Clearly, we have no hope of applying
such a technique in a space of more than a few variables, and so we need to find a
more sophisticated approach.

We can gain further insight into the problems of high-dimensional spaces by
returning to the example of polynomial curve fitting and considering how we wouldSection 1.1

Figure 1.21 Illustration of the
curse of dimensionality, showing
how the number of regions of a
regular grid grows exponentially
with the dimensionality D of the
space. For clarity, only a subset of
the cubical regions are shown for
D = 3.
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x1
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D = 2
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extend this approach to deal with input spaces having several variables. If we have
D input variables, then a general polynomial with coefficients up to order 3 would
take the form

y(x,w) = w0 +
D∑

i=1

wixi +
D∑

i=1

D∑
j=1

wijxixj +
D∑

i=1

D∑
j=1

D∑
k=1

wijkxixjxk. (1.74)

As D increases, so the number of independent coefficients (not all of the coefficients
are independent due to interchange symmetries amongst the x variables) grows pro-
portionally to D3. In practice, to capture complex dependencies in the data, we may
need to use a higher-order polynomial. For a polynomial of order M , the growth in
the number of coefficients is like DM . Although this is now a power law growth,Exercise 1.16
rather than an exponential growth, it still points to the method becoming rapidly
unwieldy and of limited practical utility.

Our geometrical intuitions, formed through a life spent in a space of three di-
mensions, can fail badly when we consider spaces of higher dimensionality. As a
simple example, consider a sphere of radius r = 1 in a space of D dimensions, and
ask what is the fraction of the volume of the sphere that lies between radius r = 1−ε
and r = 1. We can evaluate this fraction by noting that the volume of a sphere of
radius r in D dimensions must scale as rD, and so we write

VD(r) = KDrD (1.75)

where the constant KD depends only on D. Thus the required fraction is given byExercise 1.18

VD(1) − VD(1 − ε)
VD(1)

= 1 − (1 − ε)D (1.76)

which is plotted as a function of ε for various values of D in Figure 1.22. We see
that, for large D, this fraction tends to 1 even for small values of ε. Thus, in spaces
of high dimensionality, most of the volume of a sphere is concentrated in a thin shell
near the surface!

As a further example, of direct relevance to pattern recognition, consider the
behaviour of a Gaussian distribution in a high-dimensional space. If we transform
from Cartesian to polar coordinates, and then integrate out the directional variables,
we obtain an expression for the density p(r) as a function of radius r from the origin.Exercise 1.20
Thus p(r)δr is the probability mass inside a thin shell of thickness δr located at
radius r. This distribution is plotted, for various values of D, in Figure 1.23, and we
see that for large D the probability mass of the Gaussian is concentrated in a thin
shell.

The severe difficulty that can arise in spaces of many dimensions is sometimes
called the curse of dimensionality (Bellman, 1961). In this book, we shall make ex-
tensive use of illustrative examples involving input spaces of one or two dimensions,
because this makes it particularly easy to illustrate the techniques graphically. The
reader should be warned, however, that not all intuitions developed in spaces of low
dimensionality will generalize to spaces of many dimensions.
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Figure 1.22 Plot of the fraction of the volume of
a sphere lying in the range r = 1−ε
to r = 1 for various values of the
dimensionality D.
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Although the curse of dimensionality certainly raises important issues for pat-
tern recognition applications, it does not prevent us from finding effective techniques
applicable to high-dimensional spaces. The reasons for this are twofold. First, real
data will often be confined to a region of the space having lower effective dimension-
ality, and in particular the directions over which important variations in the target
variables occur may be so confined. Second, real data will typically exhibit some
smoothness properties (at least locally) so that for the most part small changes in the
input variables will produce small changes in the target variables, and so we can ex-
ploit local interpolation-like techniques to allow us to make predictions of the target
variables for new values of the input variables. Successful pattern recognition tech-
niques exploit one or both of these properties. Consider, for example, an application
in manufacturing in which images are captured of identical planar objects on a con-
veyor belt, in which the goal is to determine their orientation. Each image is a point

Figure 1.23 Plot of the probability density with
respect to radius r of a Gaus-
sian distribution for various values
of the dimensionality D. In a
high-dimensional space, most of the
probability mass of a Gaussian is lo-
cated within a thin shell at a specific
radius.
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in a high-dimensional space whose dimensionality is determined by the number of
pixels. Because the objects can occur at different positions within the image and
in different orientations, there are three degrees of freedom of variability between
images, and a set of images will live on a three dimensional manifold embedded
within the high-dimensional space. Due to the complex relationships between the
object position or orientation and the pixel intensities, this manifold will be highly
nonlinear. If the goal is to learn a model that can take an input image and output the
orientation of the object irrespective of its position, then there is only one degree of
freedom of variability within the manifold that is significant.

1.5. Decision Theory

We have seen in Section 1.2 how probability theory provides us with a consistent
mathematical framework for quantifying and manipulating uncertainty. Here we
turn to a discussion of decision theory that, when combined with probability theory,
allows us to make optimal decisions in situations involving uncertainty such as those
encountered in pattern recognition.

Suppose we have an input vector x together with a corresponding vector t of
target variables, and our goal is to predict t given a new value for x. For regression
problems, t will comprise continuous variables, whereas for classification problems
t will represent class labels. The joint probability distribution p(x, t) provides a
complete summary of the uncertainty associated with these variables. Determination
of p(x, t) from a set of training data is an example of inference and is typically a
very difficult problem whose solution forms the subject of much of this book. In
a practical application, however, we must often make a specific prediction for the
value of t, or more generally take a specific action based on our understanding of the
values t is likely to take, and this aspect is the subject of decision theory.

Consider, for example, a medical diagnosis problem in which we have taken an
X-ray image of a patient, and we wish to determine whether the patient has cancer
or not. In this case, the input vector x is the set of pixel intensities in the image,
and output variable t will represent the presence of cancer, which we denote by the
class C1, or the absence of cancer, which we denote by the class C2. We might, for
instance, choose t to be a binary variable such that t = 0 corresponds to class C1 and
t = 1 corresponds to class C2. We shall see later that this choice of label values is
particularly convenient for probabilistic models. The general inference problem then
involves determining the joint distribution p(x, Ck), or equivalently p(x, t), which
gives us the most complete probabilistic description of the situation. Although this
can be a very useful and informative quantity, in the end we must decide either to
give treatment to the patient or not, and we would like this choice to be optimal
in some appropriate sense (Duda and Hart, 1973). This is the decision step, and
it is the subject of decision theory to tell us how to make optimal decisions given
the appropriate probabilities. We shall see that the decision stage is generally very
simple, even trivial, once we have solved the inference problem.

Here we give an introduction to the key ideas of decision theory as required for
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the rest of the book. Further background, as well as more detailed accounts, can be
found in Berger (1985) and Bather (2000).

Before giving a more detailed analysis, let us first consider informally how we
might expect probabilities to play a role in making decisions. When we obtain the
X-ray image x for a new patient, our goal is to decide which of the two classes to
assign to the image. We are interested in the probabilities of the two classes given
the image, which are given by p(Ck|x). Using Bayes’ theorem, these probabilities
can be expressed in the form

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (1.77)

Note that any of the quantities appearing in Bayes’ theorem can be obtained from
the joint distribution p(x, Ck) by either marginalizing or conditioning with respect to
the appropriate variables. We can now interpret p(Ck) as the prior probability for the
class Ck, and p(Ck|x) as the corresponding posterior probability. Thus p(C1) repre-
sents the probability that a person has cancer, before we take the X-ray measurement.
Similarly, p(C1|x) is the corresponding probability, revised using Bayes’ theorem in
light of the information contained in the X-ray. If our aim is to minimize the chance
of assigning x to the wrong class, then intuitively we would choose the class having
the higher posterior probability. We now show that this intuition is correct, and we
also discuss more general criteria for making decisions.

1.5.1 Minimizing the misclassification rate
Suppose that our goal is simply to make as few misclassifications as possible.

We need a rule that assigns each value of x to one of the available classes. Such a
rule will divide the input space into regions Rk called decision regions, one for each
class, such that all points in Rk are assigned to class Ck. The boundaries between
decision regions are called decision boundaries or decision surfaces. Note that each
decision region need not be contiguous but could comprise some number of disjoint
regions. We shall encounter examples of decision boundaries and decision regions in
later chapters. In order to find the optimal decision rule, consider first of all the case
of two classes, as in the cancer problem for instance. A mistake occurs when an input
vector belonging to class C1 is assigned to class C2 or vice versa. The probability of
this occurring is given by

p(mistake) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=
∫
R1

p(x, C2) dx +
∫
R2

p(x, C1) dx. (1.78)

We are free to choose the decision rule that assigns each point x to one of the two
classes. Clearly to minimize p(mistake) we should arrange that each x is assigned to
whichever class has the smaller value of the integrand in (1.78). Thus, if p(x, C1) >
p(x, C2) for a given value of x, then we should assign that x to class C1. From the
product rule of probability we have p(x, Ck) = p(Ck|x)p(x). Because the factor
p(x) is common to both terms, we can restate this result as saying that the minimum
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R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x

Figure 1.24 Schematic illustration of the joint probabilities p(x, Ck) for each of two classes plotted
against x, together with the decision boundary x = bx. Values of x � bx are classified as
class C2 and hence belong to decision region R2, whereas points x < bx are classified
as C1 and belong to R1. Errors arise from the blue, green, and red regions, so that for
x < bx the errors are due to points from class C2 being misclassified as C1 (represented by
the sum of the red and green regions), and conversely for points in the region x � bx the
errors are due to points from class C1 being misclassified as C2 (represented by the blue
region). As we vary the location bx of the decision boundary, the combined areas of the
blue and green regions remains constant, whereas the size of the red region varies. The
optimal choice for bx is where the curves for p(x, C1) and p(x, C2) cross, corresponding to
bx = x0, because in this case the red region disappears. This is equivalent to the minimum
misclassification rate decision rule, which assigns each value of x to the class having the
higher posterior probability p(Ck|x).

probability of making a mistake is obtained if each value of x is assigned to the class
for which the posterior probability p(Ck|x) is largest. This result is illustrated for
two classes, and a single input variable x, in Figure 1.24.

For the more general case of K classes, it is slightly easier to maximize the
probability of being correct, which is given by

p(correct) =
K∑

k=1

p(x ∈ Rk, Ck)

=
K∑

k=1

∫
Rk

p(x, Ck) dx (1.79)

which is maximized when the regions Rk are chosen such that each x is assigned
to the class for which p(x, Ck) is largest. Again, using the product rule p(x, Ck) =
p(Ck|x)p(x), and noting that the factor of p(x) is common to all terms, we see
that each x should be assigned to the class having the largest posterior probability
p(Ck|x).
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Figure 1.25 An example of a loss matrix with ele-
ments Lkj for the cancer treatment problem. The rows
correspond to the true class, whereas the columns cor-
respond to the assignment of class made by our deci-
sion criterion.

( cancer normal
cancer 0 1000
normal 1 0

)

1.5.2 Minimizing the expected loss
For many applications, our objective will be more complex than simply mini-

mizing the number of misclassifications. Let us consider again the medical diagnosis
problem. We note that, if a patient who does not have cancer is incorrectly diagnosed
as having cancer, the consequences may be some patient distress plus the need for
further investigations. Conversely, if a patient with cancer is diagnosed as healthy,
the result may be premature death due to lack of treatment. Thus the consequences
of these two types of mistake can be dramatically different. It would clearly be better
to make fewer mistakes of the second kind, even if this was at the expense of making
more mistakes of the first kind.

We can formalize such issues through the introduction of a loss function, also
called a cost function, which is a single, overall measure of loss incurred in taking
any of the available decisions or actions. Our goal is then to minimize the total loss
incurred. Note that some authors consider instead a utility function, whose value
they aim to maximize. These are equivalent concepts if we take the utility to be
simply the negative of the loss, and throughout this text we shall use the loss function
convention. Suppose that, for a new value of x, the true class is Ck and that we assign
x to class Cj (where j may or may not be equal to k). In so doing, we incur some
level of loss that we denote by Lkj , which we can view as the k, j element of a loss
matrix. For instance, in our cancer example, we might have a loss matrix of the form
shown in Figure 1.25. This particular loss matrix says that there is no loss incurred
if the correct decision is made, there is a loss of 1 if a healthy patient is diagnosed as
having cancer, whereas there is a loss of 1000 if a patient having cancer is diagnosed
as healthy.

The optimal solution is the one which minimizes the loss function. However,
the loss function depends on the true class, which is unknown. For a given input
vector x, our uncertainty in the true class is expressed through the joint probability
distribution p(x, Ck) and so we seek instead to minimize the average loss, where the
average is computed with respect to this distribution, which is given by

E[L] =
∑

k

∑
j

∫
Rj

Lkjp(x, Ck) dx. (1.80)

Each x can be assigned independently to one of the decision regions Rj . Our goal
is to choose the regions Rj in order to minimize the expected loss (1.80), which
implies that for each x we should minimize

∑
k Lkjp(x, Ck). As before, we can use

the product rule p(x, Ck) = p(Ck|x)p(x) to eliminate the common factor of p(x).
Thus the decision rule that minimizes the expected loss is the one that assigns each
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Figure 1.26 Illustration of the reject option. Inputs
x such that the larger of the two poste-
rior probabilities is less than or equal to
some threshold θ will be rejected.

x

p(C1|x) p(C2|x)

0.0

1.0
θ

reject region

new x to the class j for which the quantity∑
k

Lkjp(Ck|x) (1.81)

is a minimum. This is clearly trivial to do, once we know the posterior class proba-
bilities p(Ck|x).

1.5.3 The reject option
We have seen that classification errors arise from the regions of input space

where the largest of the posterior probabilities p(Ck|x) is significantly less than unity,
or equivalently where the joint distributions p(x, Ck) have comparable values. These
are the regions where we are relatively uncertain about class membership. In some
applications, it will be appropriate to avoid making decisions on the difficult cases
in anticipation of a lower error rate on those examples for which a classification de-
cision is made. This is known as the reject option. For example, in our hypothetical
medical illustration, it may be appropriate to use an automatic system to classify
those X-ray images for which there is little doubt as to the correct class, while leav-
ing a human expert to classify the more ambiguous cases. We can achieve this by
introducing a threshold θ and rejecting those inputs x for which the largest of the
posterior probabilities p(Ck|x) is less than or equal to θ. This is illustrated for the
case of two classes, and a single continuous input variable x, in Figure 1.26. Note
that setting θ = 1 will ensure that all examples are rejected, whereas if there are K
classes then setting θ < 1/K will ensure that no examples are rejected. Thus the
fraction of examples that get rejected is controlled by the value of θ.

We can easily extend the reject criterion to minimize the expected loss, when
a loss matrix is given, taking account of the loss incurred when a reject decision is
made.Exercise 1.24

1.5.4 Inference and decision
We have broken the classification problem down into two separate stages, the

inference stage in which we use training data to learn a model for p(Ck|x), and the
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subsequent decision stage in which we use these posterior probabilities to make op-
timal class assignments. An alternative possibility would be to solve both problems
together and simply learn a function that maps inputs x directly into decisions. Such
a function is called a discriminant function.

In fact, we can identify three distinct approaches to solving decision problems,
all of which have been used in practical applications. These are given, in decreasing
order of complexity, by:

(a) First solve the inference problem of determining the class-conditional densities
p(x|Ck) for each class Ck individually. Also separately infer the prior class
probabilities p(Ck). Then use Bayes’ theorem in the form

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
(1.82)

to find the posterior class probabilities p(Ck|x). As usual, the denominator
in Bayes’ theorem can be found in terms of the quantities appearing in the
numerator, because

p(x) =
∑

k

p(x|Ck)p(Ck). (1.83)

Equivalently, we can model the joint distribution p(x, Ck) directly and then
normalize to obtain the posterior probabilities. Having found the posterior
probabilities, we use decision theory to determine class membership for each
new input x. Approaches that explicitly or implicitly model the distribution of
inputs as well as outputs are known as generative models, because by sampling
from them it is possible to generate synthetic data points in the input space.

(b) First solve the inference problem of determining the posterior class probabilities
p(Ck|x), and then subsequently use decision theory to assign each new x to
one of the classes. Approaches that model the posterior probabilities directly
are called discriminative models.

(c) Find a function f(x), called a discriminant function, which maps each input x
directly onto a class label. For instance, in the case of two-class problems,
f(·) might be binary valued and such that f = 0 represents class C1 and f = 1
represents class C2. In this case, probabilities play no role.

Let us consider the relative merits of these three alternatives. Approach (a) is the
most demanding because it involves finding the joint distribution over both x and
Ck. For many applications, x will have high dimensionality, and consequently we
may need a large training set in order to be able to determine the class-conditional
densities to reasonable accuracy. Note that the class priors p(Ck) can often be esti-
mated simply from the fractions of the training set data points in each of the classes.
One advantage of approach (a), however, is that it also allows the marginal density
of data p(x) to be determined from (1.83). This can be useful for detecting new data
points that have low probability under the model and for which the predictions may
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Figure 1.27 Example of the class-conditional densities for two classes having a single input variable x (left
plot) together with the corresponding posterior probabilities (right plot). Note that the left-hand mode of the
class-conditional density p(x|C1), shown in blue on the left plot, has no effect on the posterior probabilities. The
vertical green line in the right plot shows the decision boundary in x that gives the minimum misclassification
rate.

be of low accuracy, which is known as outlier detection or novelty detection (Bishop,
1994; Tarassenko, 1995).

However, if we only wish to make classification decisions, then it can be waste-
ful of computational resources, and excessively demanding of data, to find the joint
distribution p(x, Ck) when in fact we only really need the posterior probabilities
p(Ck|x), which can be obtained directly through approach (b). Indeed, the class-
conditional densities may contain a lot of structure that has little effect on the pos-
terior probabilities, as illustrated in Figure 1.27. There has been much interest in
exploring the relative merits of generative and discriminative approaches to machine
learning, and in finding ways to combine them (Jebara, 2004; Lasserre et al., 2006).

An even simpler approach is (c) in which we use the training data to find a
discriminant function f(x) that maps each x directly onto a class label, thereby
combining the inference and decision stages into a single learning problem. In the
example of Figure 1.27, this would correspond to finding the value of x shown by
the vertical green line, because this is the decision boundary giving the minimum
probability of misclassification.

With option (c), however, we no longer have access to the posterior probabilities
p(Ck|x). There are many powerful reasons for wanting to compute the posterior
probabilities, even if we subsequently use them to make decisions. These include:

Minimizing risk. Consider a problem in which the elements of the loss matrix are
subjected to revision from time to time (such as might occur in a financial
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application). If we know the posterior probabilities, we can trivially revise the
minimum risk decision criterion by modifying (1.81) appropriately. If we have
only a discriminant function, then any change to the loss matrix would require
that we return to the training data and solve the classification problem afresh.

Reject option. Posterior probabilities allow us to determine a rejection criterion that
will minimize the misclassification rate, or more generally the expected loss,
for a given fraction of rejected data points.

Compensating for class priors. Consider our medical X-ray problem again, and
suppose that we have collected a large number of X-ray images from the gen-
eral population for use as training data in order to build an automated screening
system. Because cancer is rare amongst the general population, we might find
that, say, only 1 in every 1,000 examples corresponds to the presence of can-
cer. If we used such a data set to train an adaptive model, we could run into
severe difficulties due to the small proportion of the cancer class. For instance,
a classifier that assigned every point to the normal class would already achieve
99.9% accuracy and it would be difficult to avoid this trivial solution. Also,
even a large data set will contain very few examples of X-ray images corre-
sponding to cancer, and so the learning algorithm will not be exposed to a
broad range of examples of such images and hence is not likely to generalize
well. A balanced data set in which we have selected equal numbers of exam-
ples from each of the classes would allow us to find a more accurate model.
However, we then have to compensate for the effects of our modifications to
the training data. Suppose we have used such a modified data set and found
models for the posterior probabilities. From Bayes’ theorem (1.82), we see that
the posterior probabilities are proportional to the prior probabilities, which we
can interpret as the fractions of points in each class. We can therefore simply
take the posterior probabilities obtained from our artificially balanced data set
and first divide by the class fractions in that data set and then multiply by the
class fractions in the population to which we wish to apply the model. Finally,
we need to normalize to ensure that the new posterior probabilities sum to one.
Note that this procedure cannot be applied if we have learned a discriminant
function directly instead of determining posterior probabilities.

Combining models. For complex applications, we may wish to break the problem
into a number of smaller subproblems each of which can be tackled by a sep-
arate module. For example, in our hypothetical medical diagnosis problem,
we may have information available from, say, blood tests as well as X-ray im-
ages. Rather than combine all of this heterogeneous information into one huge
input space, it may be more effective to build one system to interpret the X-
ray images and a different one to interpret the blood data. As long as each of
the two models gives posterior probabilities for the classes, we can combine
the outputs systematically using the rules of probability. One simple way to
do this is to assume that, for each class separately, the distributions of inputs
for the X-ray images, denoted by xI, and the blood data, denoted by xB, are
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independent, so that

p(xI,xB|Ck) = p(xI|Ck)p(xB|Ck). (1.84)

This is an example of conditional independence property, because the indepen-Section 8.2
dence holds when the distribution is conditioned on the class Ck. The posterior
probability, given both the X-ray and blood data, is then given by

p(Ck|xI,xB) ∝ p(xI,xB|Ck)p(Ck)
∝ p(xI|Ck)p(xB|Ck)p(Ck)

∝ p(Ck|xI)p(Ck|xB)
p(Ck)

(1.85)

Thus we need the class prior probabilities p(Ck), which we can easily estimate
from the fractions of data points in each class, and then we need to normalize
the resulting posterior probabilities so they sum to one. The particular condi-
tional independence assumption (1.84) is an example of the naive Bayes model.Section 8.2.2
Note that the joint marginal distribution p(xI,xB) will typically not factorize
under this model. We shall see in later chapters how to construct models for
combining data that do not require the conditional independence assumption
(1.84).

1.5.5 Loss functions for regression
So far, we have discussed decision theory in the context of classification prob-

lems. We now turn to the case of regression problems, such as the curve fitting
example discussed earlier. The decision stage consists of choosing a specific esti-Section 1.1
mate y(x) of the value of t for each input x. Suppose that in doing so, we incur a
loss L(t, y(x)). The average, or expected, loss is then given by

E[L] =
∫∫

L(t, y(x))p(x, t) dxdt. (1.86)

A common choice of loss function in regression problems is the squared loss given
by L(t, y(x)) = {y(x) − t}2. In this case, the expected loss can be written

E[L] =
∫∫

{y(x) − t}2p(x, t) dxdt. (1.87)

Our goal is to choose y(x) so as to minimize E[L]. If we assume a completely
flexible function y(x), we can do this formally using the calculus of variations toAppendix D
give

δE[L]
δy(x)

= 2
∫

{y(x) − t}p(x, t) dt = 0. (1.88)

Solving for y(x), and using the sum and product rules of probability, we obtain

y(x) =

∫
tp(x, t) dt

p(x)
=
∫

tp(t|x) dt = Et[t|x] (1.89)



1.5. Decision Theory 47

Figure 1.28 The regression function y(x),
which minimizes the expected
squared loss, is given by the
mean of the conditional distri-
bution p(t|x).

t

xx0

y(x0)

y(x)

p(t|x0)

which is the conditional average of t conditioned on x and is known as the regression
function. This result is illustrated in Figure 1.28. It can readily be extended to mul-
tiple target variables represented by the vector t, in which case the optimal solution
is the conditional average y(x) = Et[t|x].Exercise 1.25

We can also derive this result in a slightly different way, which will also shed
light on the nature of the regression problem. Armed with the knowledge that the
optimal solution is the conditional expectation, we can expand the square term as
follows

{y(x) − t}2 = {y(x) − E[t|x] + E[t|x] − t}2

= {y(x) − E[t|x]}2 + 2{y(x) − E[t|x]}{E[t|x] − t} + {E[t|x] − t}2

where, to keep the notation uncluttered, we use E[t|x] to denote Et[t|x]. Substituting
into the loss function and performing the integral over t, we see that the cross-term
vanishes and we obtain an expression for the loss function in the form

E[L] =
∫

{y(x) − E[t|x]}2
p(x) dx +

∫
{E[t|x] − t}2p(x) dx. (1.90)

The function y(x) we seek to determine enters only in the first term, which will be
minimized when y(x) is equal to E[t|x], in which case this term will vanish. This
is simply the result that we derived previously and that shows that the optimal least
squares predictor is given by the conditional mean. The second term is the variance
of the distribution of t, averaged over x. It represents the intrinsic variability of
the target data and can be regarded as noise. Because it is independent of y(x), it
represents the irreducible minimum value of the loss function.

As with the classification problem, we can either determine the appropriate prob-
abilities and then use these to make optimal decisions, or we can build models that
make decisions directly. Indeed, we can identify three distinct approaches to solving
regression problems given, in order of decreasing complexity, by:

(a) First solve the inference problem of determining the joint density p(x, t). Then
normalize to find the conditional density p(t|x), and finally marginalize to find
the conditional mean given by (1.89).
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(b) First solve the inference problem of determining the conditional density p(t|x),
and then subsequently marginalize to find the conditional mean given by (1.89).

(c) Find a regression function y(x) directly from the training data.

The relative merits of these three approaches follow the same lines as for classifica-
tion problems above.

The squared loss is not the only possible choice of loss function for regression.
Indeed, there are situations in which squared loss can lead to very poor results and
where we need to develop more sophisticated approaches. An important example
concerns situations in which the conditional distribution p(t|x) is multimodal, as
often arises in the solution of inverse problems. Here we consider briefly one simpleSection 5.6
generalization of the squared loss, called the Minkowski loss, whose expectation is
given by

E[Lq] =
∫∫

|y(x) − t|qp(x, t) dxdt (1.91)

which reduces to the expected squared loss for q = 2. The function |y − t|q is
plotted against y − t for various values of q in Figure 1.29. The minimum of E[Lq]
is given by the conditional mean for q = 2, the conditional median for q = 1, and
the conditional mode for q → 0.Exercise 1.27

1.6. Information Theory

In this chapter, we have discussed a variety of concepts from probability theory and
decision theory that will form the foundations for much of the subsequent discussion
in this book. We close this chapter by introducing some additional concepts from
the field of information theory, which will also prove useful in our development of
pattern recognition and machine learning techniques. Again, we shall focus only on
the key concepts, and we refer the reader elsewhere for more detailed discussions
(Viterbi and Omura, 1979; Cover and Thomas, 1991; MacKay, 2003) .

We begin by considering a discrete random variable x and we ask how much
information is received when we observe a specific value for this variable. The
amount of information can be viewed as the ‘degree of surprise’ on learning the
value of x. If we are told that a highly improbable event has just occurred, we will
have received more information than if we were told that some very likely event
has just occurred, and if we knew that the event was certain to happen we would
receive no information. Our measure of information content will therefore depend
on the probability distribution p(x), and we therefore look for a quantity h(x) that
is a monotonic function of the probability p(x) and that expresses the information
content. The form of h(·) can be found by noting that if we have two events x
and y that are unrelated, then the information gain from observing both of them
should be the sum of the information gained from each of them separately, so that
h(x, y) = h(x) + h(y). Two unrelated events will be statistically independent and
so p(x, y) = p(x)p(y). From these two relationships, it is easily shown that h(x)
must be given by the logarithm of p(x) and so we haveExercise 1.28
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Figure 1.29 Plots of the quantity Lq = |y − t|q for various values of q.

h(x) = − log2 p(x) (1.92)

where the negative sign ensures that information is positive or zero. Note that low
probability events x correspond to high information content. The choice of basis
for the logarithm is arbitrary, and for the moment we shall adopt the convention
prevalent in information theory of using logarithms to the base of 2. In this case, as
we shall see shortly, the units of h(x) are bits (‘binary digits’).

Now suppose that a sender wishes to transmit the value of a random variable to
a receiver. The average amount of information that they transmit in the process is
obtained by taking the expectation of (1.92) with respect to the distribution p(x) and
is given by

H[x] = −
∑

x

p(x) log2 p(x). (1.93)

This important quantity is called the entropy of the random variable x. Note that
limp→0 p ln p = 0 and so we shall take p(x) ln p(x) = 0 whenever we encounter a
value for x such that p(x) = 0.

So far we have given a rather heuristic motivation for the definition of informa-
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tion (1.92) and the corresponding entropy (1.93). We now show that these definitions
indeed possess useful properties. Consider a random variable x having 8 possible
states, each of which is equally likely. In order to communicate the value of x to
a receiver, we would need to transmit a message of length 3 bits. Notice that the
entropy of this variable is given by

H[x] = −8 × 1
8

log2

1
8

= 3 bits.

Now consider an example (Cover and Thomas, 1991) of a variable having 8 pos-
sible states {a, b, c, d, e, f, g, h} for which the respective probabilities are given by
( 1
2
, 1

4
, 1

8
, 1

16
, 1

64
, 1

64
, 1

64
, 1

64
). The entropy in this case is given by

H[x] = −1
2

log2

1
2
− 1

4
log2

1
4
− 1

8
log2

1
8
− 1

16
log2

1
16

− 4
64

log2

1
64

= 2 bits.

We see that the nonuniform distribution has a smaller entropy than the uniform one,
and we shall gain some insight into this shortly when we discuss the interpretation of
entropy in terms of disorder. For the moment, let us consider how we would transmit
the identity of the variable’s state to a receiver. We could do this, as before, using
a 3-bit number. However, we can take advantage of the nonuniform distribution by
using shorter codes for the more probable events, at the expense of longer codes for
the less probable events, in the hope of getting a shorter average code length. This
can be done by representing the states {a, b, c, d, e, f, g, h} using, for instance, the
following set of code strings: 0, 10, 110, 1110, 111100, 111101, 111110, 111111.
The average length of the code that has to be transmitted is then

average code length =
1
2
× 1 +

1
4
× 2 +

1
8
× 3 +

1
16

× 4 + 4 × 1
64

× 6 = 2 bits

which again is the same as the entropy of the random variable. Note that shorter code
strings cannot be used because it must be possible to disambiguate a concatenation
of such strings into its component parts. For instance, 11001110 decodes uniquely
into the state sequence c, a, d.

This relation between entropy and shortest coding length is a general one. The
noiseless coding theorem (Shannon, 1948) states that the entropy is a lower bound
on the number of bits needed to transmit the state of a random variable.

From now on, we shall switch to the use of natural logarithms in defining en-
tropy, as this will provide a more convenient link with ideas elsewhere in this book.
In this case, the entropy is measured in units of ‘nats’ instead of bits, which differ
simply by a factor of ln 2.

We have introduced the concept of entropy in terms of the average amount of
information needed to specify the state of a random variable. In fact, the concept of
entropy has much earlier origins in physics where it was introduced in the context
of equilibrium thermodynamics and later given a deeper interpretation as a measure
of disorder through developments in statistical mechanics. We can understand this
alternative view of entropy by considering a set of N identical objects that are to be
divided amongst a set of bins, such that there are ni objects in the ith bin. Consider
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the number of different ways of allocating the objects to the bins. There are N
ways to choose the first object, (N − 1) ways to choose the second object, and
so on, leading to a total of N ! ways to allocate all N objects to the bins, where N !
(pronounced ‘factorial N ’) denotes the product N ×(N −1)×· · ·×2×1. However,
we don’t wish to distinguish between rearrangements of objects within each bin. In
the ith bin there are ni! ways of reordering the objects, and so the total number of
ways of allocating the N objects to the bins is given by

W =
N !∏
i ni!

(1.94)

which is called the multiplicity. The entropy is then defined as the logarithm of the
multiplicity scaled by an appropriate constant

H =
1
N

lnW =
1
N

lnN ! − 1
N

∑
i

lnni!. (1.95)

We now consider the limit N → ∞, in which the fractions ni/N are held fixed, and
apply Stirling’s approximation

lnN ! � N lnN − N (1.96)

which gives

H = − lim
N→∞

∑
i

(ni

N

)
ln
(ni

N

)
= −

∑
i

pi ln pi (1.97)

where we have used
∑

i ni = N . Here pi = limN→∞(ni/N) is the probability
of an object being assigned to the ith bin. In physics terminology, the specific ar-
rangements of objects in the bins is called a microstate, and the overall distribution
of occupation numbers, expressed through the ratios ni/N , is called a macrostate.
The multiplicity W is also known as the weight of the macrostate.

We can interpret the bins as the states xi of a discrete random variable X , where
p(X = xi) = pi. The entropy of the random variable X is then

H[p] = −
∑

i

p(xi) ln p(xi). (1.98)

Distributions p(xi) that are sharply peaked around a few values will have a relatively
low entropy, whereas those that are spread more evenly across many values will
have higher entropy, as illustrated in Figure 1.30. Because 0 � pi � 1, the entropy
is nonnegative, and it will equal its minimum value of 0 when one of the pi =
1 and all other pj �=i = 0. The maximum entropy configuration can be found by
maximizing H using a Lagrange multiplier to enforce the normalization constraintAppendix E
on the probabilities. Thus we maximize

H̃ = −
∑

i

p(xi) ln p(xi) + λ

(∑
i

p(xi) − 1

)
(1.99)
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Figure 1.30 Histograms of two probability distributions over 30 bins illustrating the higher value of the entropy
H for the broader distribution. The largest entropy would arise from a uniform distribution that would give H =
− ln(1/30) = 3.40.

from which we find that all of the p(xi) are equal and are given by p(xi) = 1/M
where M is the total number of states xi. The corresponding value of the entropy
is then H = lnM . This result can also be derived from Jensen’s inequality (to be
discussed shortly). To verify that the stationary point is indeed a maximum, we canExercise 1.29
evaluate the second derivative of the entropy, which gives

∂H̃
∂p(xi)∂p(xj)

= −Iij
1
pi

(1.100)

where Iij are the elements of the identity matrix.
We can extend the definition of entropy to include distributions p(x) over con-

tinuous variables x as follows. First divide x into bins of width ∆. Then, assuming
p(x) is continuous, the mean value theorem (Weisstein, 1999) tells us that, for each
such bin, there must exist a value xi such that∫ (i+1)∆

i∆

p(x) dx = p(xi)∆. (1.101)

We can now quantize the continuous variable x by assigning any value x to the value
xi whenever x falls in the ith bin. The probability of observing the value xi is then
p(xi)∆. This gives a discrete distribution for which the entropy takes the form

H∆ = −
∑

i

p(xi)∆ ln (p(xi)∆) = −
∑

i

p(xi)∆ ln p(xi) − ln ∆ (1.102)

where we have used
∑

i p(xi)∆ = 1, which follows from (1.101). We now omit
the second term − ln ∆ on the right-hand side of (1.102) and then consider the limit
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∆ → 0. The first term on the right-hand side of (1.102) will approach the integral of
p(x) ln p(x) in this limit so that

lim
∆→0

{∑
i

p(xi)∆ ln p(xi)

}
= −

∫
p(x) ln p(x) dx (1.103)

where the quantity on the right-hand side is called the differential entropy. We see
that the discrete and continuous forms of the entropy differ by a quantity ln ∆, which
diverges in the limit ∆ → 0. This reflects the fact that to specify a continuous
variable very precisely requires a large number of bits. For a density defined over
multiple continuous variables, denoted collectively by the vector x, the differential
entropy is given by

H[x] = −
∫

p(x) ln p(x) dx. (1.104)

In the case of discrete distributions, we saw that the maximum entropy con-
figuration corresponded to an equal distribution of probabilities across the possible
states of the variable. Let us now consider the maximum entropy configuration for
a continuous variable. In order for this maximum to be well defined, it will be nec-
essary to constrain the first and second moments of p(x) as well as preserving the
normalization constraint. We therefore maximize the differential entropy with the

Ludwig Boltzmann
1844–1906

Ludwig Eduard Boltzmann was an
Austrian physicist who created the
field of statistical mechanics. Prior
to Boltzmann, the concept of en-
tropy was already known from
classical thermodynamics where it

quantifies the fact that when we take energy from a
system, not all of that energy is typically available
to do useful work. Boltzmann showed that the ther-
modynamic entropy S, a macroscopic quantity, could
be related to the statistical properties at the micro-
scopic level. This is expressed through the famous
equation S = k ln W in which W represents the
number of possible microstates in a macrostate, and
k � 1.38 × 10−23 (in units of Joules per Kelvin) is
known as Boltzmann’s constant. Boltzmann’s ideas
were disputed by many scientists of they day. One dif-
ficulty they saw arose from the second law of thermo-

dynamics, which states that the entropy of a closed
system tends to increase with time. By contrast, at
the microscopic level the classical Newtonian equa-
tions of physics are reversible, and so they found it
difficult to see how the latter could explain the for-
mer. They didn’t fully appreciate Boltzmann’s argu-
ments, which were statistical in nature and which con-
cluded not that entropy could never decrease over
time but simply that with overwhelming probability it
would generally increase. Boltzmann even had a long-
running dispute with the editor of the leading German
physics journal who refused to let him refer to atoms
and molecules as anything other than convenient the-
oretical constructs. The continued attacks on his work
lead to bouts of depression, and eventually he com-
mitted suicide. Shortly after Boltzmann’s death, new
experiments by Perrin on colloidal suspensions veri-
fied his theories and confirmed the value of the Boltz-
mann constant. The equation S = k ln W is carved on
Boltzmann’s tombstone.
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three constraints ∫ ∞

−∞
p(x) dx = 1 (1.105)∫ ∞

−∞
xp(x) dx = µ (1.106)∫ ∞

−∞
(x − µ)2p(x) dx = σ2. (1.107)

The constrained maximization can be performed using Lagrange multipliers so thatAppendix E
we maximize the following functional with respect to p(x)

−
∫ ∞

−∞
p(x) ln p(x) dx + λ1

(∫ ∞

−∞
p(x) dx − 1

)
+λ2

(∫ ∞

−∞
xp(x) dx − µ

)
+ λ3

(∫ ∞

−∞
(x − µ)2p(x) dx − σ2

)
.

Using the calculus of variations, we set the derivative of this functional to zero givingAppendix D

p(x) = exp
{−1 + λ1 + λ2x + λ3(x − µ)2

}
. (1.108)

The Lagrange multipliers can be found by back substitution of this result into the
three constraint equations, leading finally to the resultExercise 1.34

p(x) =
1

(2πσ2)1/2
exp

{
−(x − µ)2

2σ2

}
(1.109)

and so the distribution that maximizes the differential entropy is the Gaussian. Note
that we did not constrain the distribution to be nonnegative when we maximized the
entropy. However, because the resulting distribution is indeed nonnegative, we see
with hindsight that such a constraint is not necessary.

If we evaluate the differential entropy of the Gaussian, we obtainExercise 1.35

H[x] =
1
2
{
1 + ln(2πσ2)

}
. (1.110)

Thus we see again that the entropy increases as the distribution becomes broader,
i.e., as σ2 increases. This result also shows that the differential entropy, unlike the
discrete entropy, can be negative, because H(x) < 0 in (1.110) for σ2 < 1/(2πe).

Suppose we have a joint distribution p(x,y) from which we draw pairs of values
of x and y. If a value of x is already known, then the additional information needed
to specify the corresponding value of y is given by − ln p(y|x). Thus the average
additional information needed to specify y can be written as

H[y|x] = −
∫∫

p(y,x) ln p(y|x) dy dx (1.111)
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which is called the conditional entropy of y given x. It is easily seen, using the
product rule, that the conditional entropy satisfies the relationExercise 1.37

H[x,y] = H[y|x] + H[x] (1.112)

where H[x,y] is the differential entropy of p(x,y) and H[x] is the differential en-
tropy of the marginal distribution p(x). Thus the information needed to describe x
and y is given by the sum of the information needed to describe x alone plus the
additional information required to specify y given x.

1.6.1 Relative entropy and mutual information
So far in this section, we have introduced a number of concepts from information

theory, including the key notion of entropy. We now start to relate these ideas to
pattern recognition. Consider some unknown distribution p(x), and suppose that
we have modelled this using an approximating distribution q(x). If we use q(x) to
construct a coding scheme for the purpose of transmitting values of x to a receiver,
then the average additional amount of information (in nats) required to specify the
value of x (assuming we choose an efficient coding scheme) as a result of using q(x)
instead of the true distribution p(x) is given by

KL(p‖q) = −
∫

p(x) ln q(x) dx −
(
−
∫

p(x) ln p(x) dx
)

= −
∫

p(x) ln
{

q(x)
p(x)

}
dx. (1.113)

This is known as the relative entropy or Kullback-Leibler divergence, or KL diver-
gence (Kullback and Leibler, 1951), between the distributions p(x) and q(x). Note
that it is not a symmetrical quantity, that is to say KL(p‖q) �≡ KL(q‖p).

We now show that the Kullback-Leibler divergence satisfies KL(p‖q) � 0 with
equality if, and only if, p(x) = q(x). To do this we first introduce the concept of
convex functions. A function f(x) is said to be convex if it has the property that
every chord lies on or above the function, as shown in Figure 1.31. Any value of x
in the interval from x = a to x = b can be written in the form λa + (1 − λ)b where
0 � λ � 1. The corresponding point on the chord is given by λf(a) + (1 − λ)f(b),

Claude Shannon
1916–2001

After graduating from Michigan and
MIT, Shannon joined the AT&T Bell
Telephone laboratories in 1941. His
paper ‘A Mathematical Theory of
Communication’ published in the
Bell System Technical Journal in

1948 laid the foundations for modern information the-

ory. This paper introduced the word ‘bit’, and his con-
cept that information could be sent as a stream of 1s
and 0s paved the way for the communications revo-
lution. It is said that von Neumann recommended to
Shannon that he use the term entropy, not only be-
cause of its similarity to the quantity used in physics,
but also because “nobody knows what entropy really
is, so in any discussion you will always have an advan-
tage”.



56 1. INTRODUCTION

Figure 1.31 A convex function f(x) is one for which ev-
ery chord (shown in blue) lies on or above
the function (shown in red).
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and the corresponding value of the function is f (λa + (1 − λ)b). Convexity then
implies

f(λa + (1 − λ)b) � λf(a) + (1 − λ)f(b). (1.114)

This is equivalent to the requirement that the second derivative of the function be
everywhere positive. Examples of convex functions are x ln x (for x > 0) and x2. AExercise 1.36
function is called strictly convex if the equality is satisfied only for λ = 0 and λ = 1.
If a function has the opposite property, namely that every chord lies on or below the
function, it is called concave, with a corresponding definition for strictly concave. If
a function f(x) is convex, then −f(x) will be concave.

Using the technique of proof by induction, we can show from (1.114) that aExercise 1.38
convex function f(x) satisfies

f

(
M∑
i=1

λixi

)
�

M∑
i=1

λif(xi) (1.115)

where λi � 0 and
∑

i λi = 1, for any set of points {xi}. The result (1.115) is
known as Jensen’s inequality. If we interpret the λi as the probability distribution
over a discrete variable x taking the values {xi}, then (1.115) can be written

f (E[x]) � E[f(x)] (1.116)

where E[·] denotes the expectation. For continuous variables, Jensen’s inequality
takes the form

f

(∫
xp(x) dx

)
�
∫

f(x)p(x) dx. (1.117)

We can apply Jensen’s inequality in the form (1.117) to the Kullback-Leibler
divergence (1.113) to give

KL(p‖q) = −
∫

p(x) ln
{

q(x)
p(x)

}
dx � − ln

∫
q(x) dx = 0 (1.118)
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where we have used the fact that − lnx is a convex function, together with the nor-
malization condition

∫
q(x) dx = 1. In fact, − lnx is a strictly convex function,

so the equality will hold if, and only if, q(x) = p(x) for all x. Thus we can in-
terpret the Kullback-Leibler divergence as a measure of the dissimilarity of the two
distributions p(x) and q(x).

We see that there is an intimate relationship between data compression and den-
sity estimation (i.e., the problem of modelling an unknown probability distribution)
because the most efficient compression is achieved when we know the true distri-
bution. If we use a distribution that is different from the true one, then we must
necessarily have a less efficient coding, and on average the additional information
that must be transmitted is (at least) equal to the Kullback-Leibler divergence be-
tween the two distributions.

Suppose that data is being generated from an unknown distribution p(x) that we
wish to model. We can try to approximate this distribution using some parametric
distribution q(x|θ), governed by a set of adjustable parameters θ, for example a
multivariate Gaussian. One way to determine θ is to minimize the Kullback-Leibler
divergence between p(x) and q(x|θ) with respect to θ. We cannot do this directly
because we don’t know p(x). Suppose, however, that we have observed a finite set
of training points xn, for n = 1, . . . , N , drawn from p(x). Then the expectation
with respect to p(x) can be approximated by a finite sum over these points, using
(1.35), so that

KL(p‖q) �
N∑

n=1

{− ln q(xn|θ) + ln p(xn)} . (1.119)

The second term on the right-hand side of (1.119) is independent of θ, and the first
term is the negative log likelihood function for θ under the distribution q(x|θ) eval-
uated using the training set. Thus we see that minimizing this Kullback-Leibler
divergence is equivalent to maximizing the likelihood function.

Now consider the joint distribution between two sets of variables x and y given
by p(x,y). If the sets of variables are independent, then their joint distribution will
factorize into the product of their marginals p(x,y) = p(x)p(y). If the variables are
not independent, we can gain some idea of whether they are ‘close’ to being indepen-
dent by considering the Kullback-Leibler divergence between the joint distribution
and the product of the marginals, given by

I[x,y] ≡ KL(p(x,y)‖p(x)p(y))

= −
∫∫

p(x,y) ln
(

p(x)p(y)
p(x,y)

)
dxdy (1.120)

which is called the mutual information between the variables x and y. From the
properties of the Kullback-Leibler divergence, we see that I(x,y) � 0 with equal-
ity if, and only if, x and y are independent. Using the sum and product rules of
probability, we see that the mutual information is related to the conditional entropy
throughExercise 1.41

I[x,y] = H[x] − H[x|y] = H[y] − H[y|x]. (1.121)
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Thus we can view the mutual information as the reduction in the uncertainty about x
by virtue of being told the value of y (or vice versa). From a Bayesian perspective,
we can view p(x) as the prior distribution for x and p(x|y) as the posterior distribu-
tion after we have observed new data y. The mutual information therefore represents
the reduction in uncertainty about x as a consequence of the new observation y.

Exercises
1.1 (�) www Consider the sum-of-squares error function given by (1.2) in which

the function y(x,w) is given by the polynomial (1.1). Show that the coefficients
w = {wi} that minimize this error function are given by the solution to the following
set of linear equations

M∑
j=0

Aijwj = Ti (1.122)

where

Aij =
N∑

n=1

(xn)i+j , Ti =
N∑

n=1

(xn)itn. (1.123)

Here a suffix i or j denotes the index of a component, whereas (x)i denotes x raised
to the power of i.

1.2 (�) Write down the set of coupled linear equations, analogous to (1.122), satisfied
by the coefficients wi which minimize the regularized sum-of-squares error function
given by (1.4).

1.3 (� �) Suppose that we have three coloured boxes r (red), b (blue), and g (green).
Box r contains 3 apples, 4 oranges, and 3 limes, box b contains 1 apple, 1 orange,
and 0 limes, and box g contains 3 apples, 3 oranges, and 4 limes. If a box is chosen
at random with probabilities p(r) = 0.2, p(b) = 0.2, p(g) = 0.6, and a piece of
fruit is removed from the box (with equal probability of selecting any of the items in
the box), then what is the probability of selecting an apple? If we observe that the
selected fruit is in fact an orange, what is the probability that it came from the green
box?

1.4 (� �) www Consider a probability density px(x) defined over a continuous vari-
able x, and suppose that we make a nonlinear change of variable using x = g(y),
so that the density transforms according to (1.27). By differentiating (1.27), show
that the location ŷ of the maximum of the density in y is not in general related to the
location x̂ of the maximum of the density over x by the simple functional relation
x̂ = g(ŷ) as a consequence of the Jacobian factor. This shows that the maximum
of a probability density (in contrast to a simple function) is dependent on the choice
of variable. Verify that, in the case of a linear transformation, the location of the
maximum transforms in the same way as the variable itself.

1.5 (�) Using the definition (1.38) show that var[f(x)] satisfies (1.39).
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1.6 (�) Show that if two variables x and y are independent, then their covariance is
zero.

1.7 (� �) www In this exercise, we prove the normalization condition (1.48) for the
univariate Gaussian. To do this consider, the integral

I =
∫ ∞

−∞
exp

(
− 1

2σ2
x2

)
dx (1.124)

which we can evaluate by first writing its square in the form

I2 =
∫ ∞

−∞

∫ ∞

−∞
exp

(
− 1

2σ2
x2 − 1

2σ2
y2

)
dxdy. (1.125)

Now make the transformation from Cartesian coordinates (x, y) to polar coordinates
(r, θ) and then substitute u = r2. Show that, by performing the integrals over θ and
u, and then taking the square root of both sides, we obtain

I =
(
2πσ2

)1/2
. (1.126)

Finally, use this result to show that the Gaussian distribution N (x|µ, σ2) is normal-
ized.

1.8 (� �) www By using a change of variables, verify that the univariate Gaussian
distribution given by (1.46) satisfies (1.49). Next, by differentiating both sides of the
normalization condition ∫ ∞

−∞
N (

x|µ, σ2
)

dx = 1 (1.127)

with respect to σ2, verify that the Gaussian satisfies (1.50). Finally, show that (1.51)
holds.

1.9 (�) www Show that the mode (i.e. the maximum) of the Gaussian distribution
(1.46) is given by µ. Similarly, show that the mode of the multivariate Gaussian
(1.52) is given by µ.

1.10 (�) www Suppose that the two variables x and z are statistically independent.
Show that the mean and variance of their sum satisfies

E[x + z] = E[x] + E[z] (1.128)

var[x + z] = var[x] + var[z]. (1.129)

1.11 (�) By setting the derivatives of the log likelihood function (1.54) with respect to µ
and σ2 equal to zero, verify the results (1.55) and (1.56).
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1.12 (� �) www Using the results (1.49) and (1.50), show that

E[xnxm] = µ2 + Inmσ2 (1.130)

where xn and xm denote data points sampled from a Gaussian distribution with mean
µ and variance σ2, and Inm satisfies Inm = 1 if n = m and Inm = 0 otherwise.
Hence prove the results (1.57) and (1.58).

1.13 (�) Suppose that the variance of a Gaussian is estimated using the result (1.56) but
with the maximum likelihood estimate µML replaced with the true value µ of the
mean. Show that this estimator has the property that its expectation is given by the
true variance σ2.

1.14 (� �) Show that an arbitrary square matrix with elements wij can be written in
the form wij = wS

ij + wA
ij where wS

ij and wA
ij are symmetric and anti-symmetric

matrices, respectively, satisfying wS
ij = wS

ji and wA
ij = −wA

ji for all i and j. Now
consider the second order term in a higher order polynomial in D dimensions, given
by

D∑
i=1

D∑
j=1

wijxixj . (1.131)

Show that
D∑

i=1

D∑
j=1

wijxixj =
D∑

i=1

D∑
j=1

wS
ijxixj (1.132)

so that the contribution from the anti-symmetric matrix vanishes. We therefore see
that, without loss of generality, the matrix of coefficients wij can be chosen to be
symmetric, and so not all of the D2 elements of this matrix can be chosen indepen-
dently. Show that the number of independent parameters in the matrix wS

ij is given
by D(D + 1)/2.

1.15 (� � �) www In this exercise and the next, we explore how the number of indepen-
dent parameters in a polynomial grows with the order M of the polynomial and with
the dimensionality D of the input space. We start by writing down the M th order
term for a polynomial in D dimensions in the form

D∑
i1=1

D∑
i2=1

· · ·
D∑

iM=1

wi1i2···iM
xi1xi2 · · ·xiM

. (1.133)

The coefficients wi1i2···iM
comprise DM elements, but the number of independent

parameters is significantly fewer due to the many interchange symmetries of the
factor xi1xi2 · · ·xiM

. Begin by showing that the redundancy in the coefficients can
be removed by rewriting this M th order term in the form

D∑
i1=1

i1∑
i2=1

· · ·
iM−1∑
iM=1

w̃i1i2···iM
xi1xi2 · · ·xiM

. (1.134)
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Note that the precise relationship between the w̃ coefficients and w coefficients need
not be made explicit. Use this result to show that the number of independent param-
eters n(D, M), which appear at order M , satisfies the following recursion relation

n(D, M) =
D∑

i=1

n(i, M − 1). (1.135)

Next use proof by induction to show that the following result holds

D∑
i=1

(i + M − 2)!
(i − 1)! (M − 1)!

=
(D + M − 1)!
(D − 1)! M !

(1.136)

which can be done by first proving the result for D = 1 and arbitrary M by making
use of the result 0! = 1, then assuming it is correct for dimension D and verifying
that it is correct for dimension D + 1. Finally, use the two previous results, together
with proof by induction, to show

n(D, M) =
(D + M − 1)!
(D − 1)! M !

. (1.137)

To do this, first show that the result is true for M = 2, and any value of D � 1,
by comparison with the result of Exercise 1.14. Then make use of (1.135), together
with (1.136), to show that, if the result holds at order M − 1, then it will also hold at
order M

1.16 (� � �) In Exercise 1.15, we proved the result (1.135) for the number of independent
parameters in the M th order term of a D-dimensional polynomial. We now find an
expression for the total number N(D, M) of independent parameters in all of the
terms up to and including the M6th order. First show that N(D, M) satisfies

N(D, M) =
M∑

m=0

n(D, m) (1.138)

where n(D, m) is the number of independent parameters in the term of order m.
Now make use of the result (1.137), together with proof by induction, to show that

N(d, M) =
(D + M)!

D! M !
. (1.139)

This can be done by first proving that the result holds for M = 0 and arbitrary
D � 1, then assuming that it holds at order M , and hence showing that it holds at
order M + 1. Finally, make use of Stirling’s approximation in the form

n! � nne−n (1.140)

for large n to show that, for D 
 M , the quantity N(D, M) grows like DM ,
and for M 
 D it grows like MD. Consider a cubic (M = 3) polynomial in D
dimensions, and evaluate numerically the total number of independent parameters
for (i) D = 10 and (ii) D = 100, which correspond to typical small-scale and
medium-scale machine learning applications.
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1.17 (� �) www The gamma function is defined by

Γ(x) ≡
∫ ∞

0

ux−1e−u du. (1.141)

Using integration by parts, prove the relation Γ(x + 1) = xΓ(x). Show also that
Γ(1) = 1 and hence that Γ(x + 1) = x! when x is an integer.

1.18 (� �) www We can use the result (1.126) to derive an expression for the surface
area SD, and the volume VD, of a sphere of unit radius in D dimensions. To do this,
consider the following result, which is obtained by transforming from Cartesian to
polar coordinates

D∏
i=1

∫ ∞

−∞
e−x2

i dxi = SD

∫ ∞

0

e−r2
rD−1 dr. (1.142)

Using the definition (1.141) of the Gamma function, together with (1.126), evaluate
both sides of this equation, and hence show that

SD =
2πD/2

Γ(D/2)
. (1.143)

Next, by integrating with respect to radius from 0 to 1, show that the volume of the
unit sphere in D dimensions is given by

VD =
SD

D
. (1.144)

Finally, use the results Γ(1) = 1 and Γ(3/2) =
√

π/2 to show that (1.143) and
(1.144) reduce to the usual expressions for D = 2 and D = 3.

1.19 (� �) Consider a sphere of radius a in D-dimensions together with the concentric
hypercube of side 2a, so that the sphere touches the hypercube at the centres of each
of its sides. By using the results of Exercise 1.18, show that the ratio of the volume
of the sphere to the volume of the cube is given by

volume of sphere
volume of cube

=
πD/2

D2D−1Γ(D/2)
. (1.145)

Now make use of Stirling’s formula in the form

Γ(x + 1) � (2π)1/2e−xxx+1/2 (1.146)

which is valid for x 
 1, to show that, as D → ∞, the ratio (1.145) goes to zero.
Show also that the ratio of the distance from the centre of the hypercube to one of
the corners, divided by the perpendicular distance to one of the sides, is

√
D, which

therefore goes to ∞ as D → ∞. From these results we see that, in a space of high
dimensionality, most of the volume of a cube is concentrated in the large number of
corners, which themselves become very long ‘spikes’!
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1.20 (� �) www In this exercise, we explore the behaviour of the Gaussian distribution
in high-dimensional spaces. Consider a Gaussian distribution in D dimensions given
by

p(x) =
1

(2πσ2)D/2
exp

(
−‖x‖2

2σ2

)
. (1.147)

We wish to find the density with respect to radius in polar coordinates in which the
direction variables have been integrated out. To do this, show that the integral of
the probability density over a thin shell of radius r and thickness ε, where ε � 1, is
given by p(r)ε where

p(r) =
SDrD−1

(2πσ2)D/2
exp

(
− r2

2σ2

)
(1.148)

where SD is the surface area of a unit sphere in D dimensions. Show that the function
p(r) has a single stationary point located, for large D, at r̂ � √

Dσ. By considering
p(r̂ + ε) where ε � r̂, show that for large D,

p(r̂ + ε) = p(r̂) exp
(
− 3ε2

2σ2

)
(1.149)

which shows that r̂ is a maximum of the radial probability density and also that p(r)
decays exponentially away from its maximum at r̂ with length scale σ. We have
already seen that σ � r̂ for large D, and so we see that most of the probability
mass is concentrated in a thin shell at large radius. Finally, show that the probability
density p(x) is larger at the origin than at the radius r̂ by a factor of exp(D/2).
We therefore see that most of the probability mass in a high-dimensional Gaussian
distribution is located at a different radius from the region of high probability density.
This property of distributions in spaces of high dimensionality will have important
consequences when we consider Bayesian inference of model parameters in later
chapters.

1.21 (� �) Consider two nonnegative numbers a and b, and show that, if a � b, then
a � (ab)1/2. Use this result to show that, if the decision regions of a two-class
classification problem are chosen to minimize the probability of misclassification,
this probability will satisfy

p(mistake) �
∫

{p(x, C1)p(x, C2)}1/2 dx. (1.150)

1.22 (�) www Given a loss matrix with elements Lkj , the expected risk is minimized
if, for each x, we choose the class that minimizes (1.81). Verify that, when the
loss matrix is given by Lkj = 1 − Ikj , where Ikj are the elements of the identity
matrix, this reduces to the criterion of choosing the class having the largest posterior
probability. What is the interpretation of this form of loss matrix?

1.23 (�) Derive the criterion for minimizing the expected loss when there is a general
loss matrix and general prior probabilities for the classes.
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1.24 (� �) www Consider a classification problem in which the loss incurred when
an input vector from class Ck is classified as belonging to class Cj is given by the
loss matrix Lkj , and for which the loss incurred in selecting the reject option is λ.
Find the decision criterion that will give the minimum expected loss. Verify that this
reduces to the reject criterion discussed in Section 1.5.3 when the loss matrix is given
by Lkj = 1− Ikj . What is the relationship between λ and the rejection threshold θ?

1.25 (�) www Consider the generalization of the squared loss function (1.87) for a
single target variable t to the case of multiple target variables described by the vector
t given by

E[L(t,y(x))] =
∫∫

‖y(x) − t‖2p(x, t) dxdt. (1.151)

Using the calculus of variations, show that the function y(x) for which this expected
loss is minimized is given by y(x) = Et[t|x]. Show that this result reduces to (1.89)
for the case of a single target variable t.

1.26 (�) By expansion of the square in (1.151), derive a result analogous to (1.90) and
hence show that the function y(x) that minimizes the expected squared loss for the
case of a vector t of target variables is again given by the conditional expectation of
t.

1.27 (� �) www Consider the expected loss for regression problems under the Lq loss
function given by (1.91). Write down the condition that y(x) must satisfy in order
to minimize E[Lq]. Show that, for q = 1, this solution represents the conditional
median, i.e., the function y(x) such that the probability mass for t < y(x) is the
same as for t � y(x). Also show that the minimum expected Lq loss for q → 0 is
given by the conditional mode, i.e., by the function y(x) equal to the value of t that
maximizes p(t|x) for each x.

1.28 (�) In Section 1.6, we introduced the idea of entropy h(x) as the information gained
on observing the value of a random variable x having distribution p(x). We saw
that, for independent variables x and y for which p(x, y) = p(x)p(y), the entropy
functions are additive, so that h(x, y) = h(x) + h(y). In this exercise, we derive the
relation between h and p in the form of a function h(p). First show that h(p2) =
2h(p), and hence by induction that h(pn) = nh(p) where n is a positive integer.
Hence show that h(pn/m) = (n/m)h(p) where m is also a positive integer. This
implies that h(px) = xh(p) where x is a positive rational number, and hence by
continuity when it is a positive real number. Finally, show that this implies h(p)
must take the form h(p) ∝ ln p.

1.29 (�) www Consider an M -state discrete random variable x, and use Jensen’s in-
equality in the form (1.115) to show that the entropy of its distribution p(x) satisfies
H[x] � ln M .

1.30 (� �) Evaluate the Kullback-Leibler divergence (1.113) between two Gaussians
p(x) = N (x|µ, σ2) and q(x) = N (x|m, s2).
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Table 1.3 The joint distribution p(x, y) for two binary variables
x and y used in Exercise 1.39.

y
0 1

x
0 1/3 1/3
1 0 1/3

1.31 (� �) www Consider two variables x and y having joint distribution p(x,y). Show
that the differential entropy of this pair of variables satisfies

H[x,y] � H[x] + H[y] (1.152)

with equality if, and only if, x and y are statistically independent.

1.32 (�) Consider a vector x of continuous variables with distribution p(x) and corre-
sponding entropy H[x]. Suppose that we make a nonsingular linear transformation
of x to obtain a new variable y = Ax. Show that the corresponding entropy is given
by H[y] = H[x] + ln |A| where |A| denotes the determinant of A.

1.33 (� �) Suppose that the conditional entropy H[y|x] between two discrete random
variables x and y is zero. Show that, for all values of x such that p(x) > 0, the
variable y must be a function of x, in other words for each x there is only one value
of y such that p(y|x) �= 0.

1.34 (� �) www Use the calculus of variations to show that the stationary point of the
functional (1.108) is given by (1.108). Then use the constraints (1.105), (1.106),
and (1.107) to eliminate the Lagrange multipliers and hence show that the maximum
entropy solution is given by the Gaussian (1.109).

1.35 (�) www Use the results (1.106) and (1.107) to show that the entropy of the
univariate Gaussian (1.109) is given by (1.110).

1.36 (�) A strictly convex function is defined as one for which every chord lies above
the function. Show that this is equivalent to the condition that the second derivative
of the function be positive.

1.37 (�) Using the definition (1.111) together with the product rule of probability, prove
the result (1.112).

1.38 (� �) www Using proof by induction, show that the inequality (1.114) for convex
functions implies the result (1.115).

1.39 (� � �) Consider two binary variables x and y having the joint distribution given in
Table 1.3.

Evaluate the following quantities

(a) H[x] (c) H[y|x] (e) H[x, y]
(b) H[y] (d) H[x|y] (f) I[x, y].

Draw a diagram to show the relationship between these various quantities.
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1.40 (�) By applying Jensen’s inequality (1.115) with f(x) = lnx, show that the arith-
metic mean of a set of real numbers is never less than their geometrical mean.

1.41 (�) www Using the sum and product rules of probability, show that the mutual
information I(x,y) satisfies the relation (1.121).



2
Probability

Distributions

In Chapter 1, we emphasized the central role played by probability theory in the
solution of pattern recognition problems. We turn now to an exploration of some
particular examples of probability distributions and their properties. As well as be-
ing of great interest in their own right, these distributions can form building blocks
for more complex models and will be used extensively throughout the book. The
distributions introduced in this chapter will also serve another important purpose,
namely to provide us with the opportunity to discuss some key statistical concepts,
such as Bayesian inference, in the context of simple models before we encounter
them in more complex situations in later chapters.

One role for the distributions discussed in this chapter is to model the prob-
ability distribution p(x) of a random variable x, given a finite set x1, . . . ,xN of
observations. This problem is known as density estimation. For the purposes of
this chapter, we shall assume that the data points are independent and identically
distributed. It should be emphasized that the problem of density estimation is fun-

67
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damentally ill-posed, because there are infinitely many probability distributions that
could have given rise to the observed finite data set. Indeed, any distribution p(x)
that is nonzero at each of the data points x1, . . . ,xN is a potential candidate. The
issue of choosing an appropriate distribution relates to the problem of model selec-
tion that has already been encountered in the context of polynomial curve fitting in
Chapter 1 and that is a central issue in pattern recognition.

We begin by considering the binomial and multinomial distributions for discrete
random variables and the Gaussian distribution for continuous random variables.
These are specific examples of parametric distributions, so-called because they are
governed by a small number of adaptive parameters, such as the mean and variance in
the case of a Gaussian for example. To apply such models to the problem of density
estimation, we need a procedure for determining suitable values for the parameters,
given an observed data set. In a frequentist treatment, we choose specific values
for the parameters by optimizing some criterion, such as the likelihood function. By
contrast, in a Bayesian treatment we introduce prior distributions over the parameters
and then use Bayes’ theorem to compute the corresponding posterior distribution
given the observed data.

We shall see that an important role is played by conjugate priors, that lead to
posterior distributions having the same functional form as the prior, and that there-
fore lead to a greatly simplified Bayesian analysis. For example, the conjugate prior
for the parameters of the multinomial distribution is called the Dirichlet distribution,
while the conjugate prior for the mean of a Gaussian is another Gaussian. All of these
distributions are examples of the exponential family of distributions, which possess
a number of important properties, and which will be discussed in some detail.

One limitation of the parametric approach is that it assumes a specific functional
form for the distribution, which may turn out to be inappropriate for a particular
application. An alternative approach is given by nonparametric density estimation
methods in which the form of the distribution typically depends on the size of the data
set. Such models still contain parameters, but these control the model complexity
rather than the form of the distribution. We end this chapter by considering three
nonparametric methods based respectively on histograms, nearest-neighbours, and
kernels.

2.1. Binary Variables

We begin by considering a single binary random variable x ∈ {0, 1}. For example,
x might describe the outcome of flipping a coin, with x = 1 representing ‘heads’,
and x = 0 representing ‘tails’. We can imagine that this is a damaged coin so that
the probability of landing heads is not necessarily the same as that of landing tails.
The probability of x = 1 will be denoted by the parameter µ so that

p(x = 1|µ) = µ (2.1)
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where 0 � µ � 1, from which it follows that p(x = 0|µ) = 1 − µ. The probability
distribution over x can therefore be written in the form

Bern(x|µ) = µx(1 − µ)1−x (2.2)

which is known as the Bernoulli distribution. It is easily verified that this distributionExercise 2.1
is normalized and that it has mean and variance given by

E[x] = µ (2.3)

var[x] = µ(1 − µ). (2.4)

Now suppose we have a data set D = {x1, . . . , xN} of observed values of x.
We can construct the likelihood function, which is a function of µ, on the assumption
that the observations are drawn independently from p(x|µ), so that

p(D|µ) =
N∏

n=1

p(xn|µ) =
N∏

n=1

µxn(1 − µ)1−xn . (2.5)

In a frequentist setting, we can estimate a value for µ by maximizing the likelihood
function, or equivalently by maximizing the logarithm of the likelihood. In the case
of the Bernoulli distribution, the log likelihood function is given by

ln p(D|µ) =
N∑

n=1

ln p(xn|µ) =
N∑

n=1

{xn ln µ + (1 − xn) ln(1 − µ)} . (2.6)

At this point, it is worth noting that the log likelihood function depends on the N
observations xn only through their sum

∑
n xn. This sum provides an example of a

sufficient statistic for the data under this distribution, and we shall study the impor-
tant role of sufficient statistics in some detail. If we set the derivative of ln p(D|µ)Section 2.4
with respect to µ equal to zero, we obtain the maximum likelihood estimator

µML =
1
N

N∑
n=1

xn (2.7)

Jacob Bernoulli
1654–1705

Jacob Bernoulli, also known as
Jacques or James Bernoulli, was a
Swiss mathematician and was the
first of many in the Bernoulli family
to pursue a career in science and
mathematics. Although compelled

to study philosophy and theology against his will by
his parents, he travelled extensively after graduating
in order to meet with many of the leading scientists of

his time, including Boyle and Hooke in England. When
he returned to Switzerland, he taught mechanics and
became Professor of Mathematics at Basel in 1687.
Unfortunately, rivalry between Jacob and his younger
brother Johann turned an initially productive collabora-
tion into a bitter and public dispute. Jacob’s most sig-
nificant contributions to mathematics appeared in The
Art of Conjecture published in 1713, eight years after
his death, which deals with topics in probability the-
ory including what has become known as the Bernoulli
distribution.
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Figure 2.1 Histogram plot of the binomial dis-
tribution (2.9) as a function of m for
N = 10 and µ = 0.25.

m
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which is also known as the sample mean. If we denote the number of observations
of x = 1 (heads) within this data set by m, then we can write (2.7) in the form

µML =
m

N
(2.8)

so that the probability of landing heads is given, in this maximum likelihood frame-
work, by the fraction of observations of heads in the data set.

Now suppose we flip a coin, say, 3 times and happen to observe 3 heads. Then
N = m = 3 and µML = 1. In this case, the maximum likelihood result would
predict that all future observations should give heads. Common sense tells us that
this is unreasonable, and in fact this is an extreme example of the over-fitting associ-
ated with maximum likelihood. We shall see shortly how to arrive at more sensible
conclusions through the introduction of a prior distribution over µ.

We can also work out the distribution of the number m of observations of x = 1,
given that the data set has size N . This is called the binomial distribution, and
from (2.5) we see that it is proportional to µm(1 − µ)N−m. In order to obtain the
normalization coefficient we note that out of N coin flips, we have to add up all
of the possible ways of obtaining m heads, so that the binomial distribution can be
written

Bin(m|N, µ) =
(

N

m

)
µm(1 − µ)N−m (2.9)

where (
N

m

)
≡ N !

(N − m)!m!
(2.10)

is the number of ways of choosing m objects out of a total of N identical objects.Exercise 2.3
Figure 2.1 shows a plot of the binomial distribution for N = 10 and µ = 0.25.

The mean and variance of the binomial distribution can be found by using the
result of Exercise 1.10, which shows that for independent events the mean of the
sum is the sum of the means, and the variance of the sum is the sum of the variances.
Because m = x1 + . . . + xN , and for each observation the mean and variance are
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given by (2.3) and (2.4), respectively, we have

E[m] ≡
N∑

m=0

mBin(m|N, µ) = Nµ (2.11)

var[m] ≡
N∑

m=0

(m − E[m])2 Bin(m|N, µ) = Nµ(1 − µ). (2.12)

These results can also be proved directly using calculus.Exercise 2.4

2.1.1 The beta distribution
We have seen in (2.8) that the maximum likelihood setting for the parameter µ

in the Bernoulli distribution, and hence in the binomial distribution, is given by the
fraction of the observations in the data set having x = 1. As we have already noted,
this can give severely over-fitted results for small data sets. In order to develop a
Bayesian treatment for this problem, we need to introduce a prior distribution p(µ)
over the parameter µ. Here we consider a form of prior distribution that has a simple
interpretation as well as some useful analytical properties. To motivate this prior,
we note that the likelihood function takes the form of the product of factors of the
form µx(1 − µ)1−x. If we choose a prior to be proportional to powers of µ and
(1 − µ), then the posterior distribution, which is proportional to the product of the
prior and the likelihood function, will have the same functional form as the prior.
This property is called conjugacy and we will see several examples of it later in this
chapter. We therefore choose a prior, called the beta distribution, given by

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1 − µ)b−1 (2.13)

where Γ(x) is the gamma function defined by (1.141), and the coefficient in (2.13)
ensures that the beta distribution is normalized, so thatExercise 2.5 ∫ 1

0

Beta(µ|a, b) dµ = 1. (2.14)

The mean and variance of the beta distribution are given byExercise 2.6

E[µ] =
a

a + b
(2.15)

var[µ] =
ab

(a + b)2(a + b + 1)
. (2.16)

The parameters a and b are often called hyperparameters because they control the
distribution of the parameter µ. Figure 2.2 shows plots of the beta distribution for
various values of the hyperparameters.

The posterior distribution of µ is now obtained by multiplying the beta prior
(2.13) by the binomial likelihood function (2.9) and normalizing. Keeping only the
factors that depend on µ, we see that this posterior distribution has the form

p(µ|m, l, a, b) ∝ µm+a−1(1 − µ)l+b−1 (2.17)
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Figure 2.2 Plots of the beta distribution Beta(µ|a, b) given by (2.13) as a function of µ for various values of the
hyperparameters a and b.

where l = N − m, and therefore corresponds to the number of ‘tails’ in the coin
example. We see that (2.17) has the same functional dependence on µ as the prior
distribution, reflecting the conjugacy properties of the prior with respect to the like-
lihood function. Indeed, it is simply another beta distribution, and its normalization
coefficient can therefore be obtained by comparison with (2.13) to give

p(µ|m, l, a, b) =
Γ(m + a + l + b)
Γ(m + a)Γ(l + b)

µm+a−1(1 − µ)l+b−1. (2.18)

We see that the effect of observing a data set of m observations of x = 1 and
l observations of x = 0 has been to increase the value of a by m, and the value of
b by l, in going from the prior distribution to the posterior distribution. This allows
us to provide a simple interpretation of the hyperparameters a and b in the prior as
an effective number of observations of x = 1 and x = 0, respectively. Note that
a and b need not be integers. Furthermore, the posterior distribution can act as the
prior if we subsequently observe additional data. To see this, we can imagine taking
observations one at a time and after each observation updating the current posterior
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Figure 2.3 Illustration of one step of sequential Bayesian inference. The prior is given by a beta distribution
with parameters a = 2, b = 2, and the likelihood function, given by (2.9) with N = m = 1, corresponds to a
single observation of x = 1, so that the posterior is given by a beta distribution with parameters a = 3, b = 2.

distribution by multiplying by the likelihood function for the new observation and
then normalizing to obtain the new, revised posterior distribution. At each stage, the
posterior is a beta distribution with some total number of (prior and actual) observed
values for x = 1 and x = 0 given by the parameters a and b. Incorporation of an
additional observation of x = 1 simply corresponds to incrementing the value of a
by 1, whereas for an observation of x = 0 we increment b by 1. Figure 2.3 illustrates
one step in this process.

We see that this sequential approach to learning arises naturally when we adopt
a Bayesian viewpoint. It is independent of the choice of prior and of the likelihood
function and depends only on the assumption of i.i.d. data. Sequential methods make
use of observations one at a time, or in small batches, and then discard them before
the next observations are used. They can be used, for example, in real-time learning
scenarios where a steady stream of data is arriving, and predictions must be made
before all of the data is seen. Because they do not require the whole data set to be
stored or loaded into memory, sequential methods are also useful for large data sets.
Maximum likelihood methods can also be cast into a sequential framework.Section 2.3.5

If our goal is to predict, as best we can, the outcome of the next trial, then we
must evaluate the predictive distribution of x, given the observed data set D. From
the sum and product rules of probability, this takes the form

p(x = 1|D) =
∫ 1

0

p(x = 1|µ)p(µ|D) dµ =
∫ 1

0

µp(µ|D) dµ = E[µ|D]. (2.19)

Using the result (2.18) for the posterior distribution p(µ|D), together with the result
(2.15) for the mean of the beta distribution, we obtain

p(x = 1|D) =
m + a

m + a + l + b
(2.20)

which has a simple interpretation as the total fraction of observations (both real ob-
servations and fictitious prior observations) that correspond to x = 1. Note that in
the limit of an infinitely large data set m, l → ∞ the result (2.20) reduces to the
maximum likelihood result (2.8). As we shall see, it is a very general property that
the Bayesian and maximum likelihood results will agree in the limit of an infinitely
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large data set. For a finite data set, the posterior mean for µ always lies between the
prior mean and the maximum likelihood estimate for µ corresponding to the relative
frequencies of events given by (2.7).Exercise 2.7

From Figure 2.2, we see that as the number of observations increases, so the
posterior distribution becomes more sharply peaked. This can also be seen from
the result (2.16) for the variance of the beta distribution, in which we see that the
variance goes to zero for a → ∞ or b → ∞. In fact, we might wonder whether it is
a general property of Bayesian learning that, as we observe more and more data, the
uncertainty represented by the posterior distribution will steadily decrease.

To address this, we can take a frequentist view of Bayesian learning and show
that, on average, such a property does indeed hold. Consider a general Bayesian
inference problem for a parameter θ for which we have observed a data set D, de-
scribed by the joint distribution p(θ,D). The following resultExercise 2.8

Eθ[θ] = ED [Eθ[θ|D]] (2.21)

where

Eθ[θ] ≡
∫

p(θ)θ dθ (2.22)

ED[Eθ[θ|D]] ≡
∫ {∫

θp(θ|D) dθ

}
p(D) dD (2.23)

says that the posterior mean of θ, averaged over the distribution generating the data,
is equal to the prior mean of θ. Similarly, we can show that

varθ[θ] = ED [varθ[θ|D]] + varD [Eθ[θ|D]] . (2.24)

The term on the left-hand side of (2.24) is the prior variance of θ. On the right-
hand side, the first term is the average posterior variance of θ, and the second term
measures the variance in the posterior mean of θ. Because this variance is a positive
quantity, this result shows that, on average, the posterior variance of θ is smaller than
the prior variance. The reduction in variance is greater if the variance in the posterior
mean is greater. Note, however, that this result only holds on average, and that for a
particular observed data set it is possible for the posterior variance to be larger than
the prior variance.

2.2. Multinomial Variables

Binary variables can be used to describe quantities that can take one of two possible
values. Often, however, we encounter discrete variables that can take on one of K
possible mutually exclusive states. Although there are various alternative ways to
express such variables, we shall see shortly that a particularly convenient represen-
tation is the 1-of-K scheme in which the variable is represented by a K-dimensional
vector x in which one of the elements xk equals 1, and all remaining elements equal
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0. So, for instance if we have a variable that can take K = 6 states and a particular
observation of the variable happens to correspond to the state where x3 = 1, then x
will be represented by

x = (0, 0, 1, 0, 0, 0)T. (2.25)

Note that such vectors satisfy
∑K

k=1 xk = 1. If we denote the probability of xk = 1
by the parameter µk, then the distribution of x is given

p(x|µ) =
K∏

k=1

µxk

k (2.26)

where µ = (µ1, . . . , µK)T, and the parameters µk are constrained to satisfy µk � 0
and

∑
k µk = 1, because they represent probabilities. The distribution (2.26) can be

regarded as a generalization of the Bernoulli distribution to more than two outcomes.
It is easily seen that the distribution is normalized

∑
x

p(x|µ) =
K∑

k=1

µk = 1 (2.27)

and that
E[x|µ] =

∑
x

p(x|µ)x = (µ1, . . . , µM )T = µ. (2.28)

Now consider a data set D of N independent observations x1, . . . ,xN . The
corresponding likelihood function takes the form

p(D|µ) =
N∏

n=1

K∏
k=1

µxnk

k =
K∏

k=1

µ
(P

n xnk)
k =

K∏
k=1

µmk

k . (2.29)

We see that the likelihood function depends on the N data points only through the
K quantities

mk =
∑

n

xnk (2.30)

which represent the number of observations of xk = 1. These are called the sufficient
statistics for this distribution.Section 2.4

In order to find the maximum likelihood solution for µ, we need to maximize
ln p(D|µ) with respect to µk taking account of the constraint that the µk must sum
to one. This can be achieved using a Lagrange multiplier λ and maximizingAppendix E

K∑
k=1

mk lnµk + λ

(
K∑

k=1

µk − 1

)
. (2.31)

Setting the derivative of (2.31) with respect to µk to zero, we obtain

µk = −mk/λ. (2.32)
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We can solve for the Lagrange multiplier λ by substituting (2.32) into the constraint∑
k µk = 1 to give λ = −N . Thus we obtain the maximum likelihood solution in

the form
µML

k =
mk

N
(2.33)

which is the fraction of the N observations for which xk = 1.
We can consider the joint distribution of the quantities m1, . . . , mK , conditioned

on the parameters µ and on the total number N of observations. From (2.29) this
takes the form

Mult(m1, m2, . . . , mK |µ, N) =
(

N

m1m2 . . . mK

) K∏
k=1

µmk

k (2.34)

which is known as the multinomial distribution. The normalization coefficient is the
number of ways of partitioning N objects into K groups of size m1, . . . , mK and is
given by (

N

m1m2 . . . mK

)
=

N !
m1!m2! . . . mK !

. (2.35)

Note that the variables mk are subject to the constraint

K∑
k=1

mk = N. (2.36)

2.2.1 The Dirichlet distribution
We now introduce a family of prior distributions for the parameters {µk} of

the multinomial distribution (2.34). By inspection of the form of the multinomial
distribution, we see that the conjugate prior is given by

p(µ|α) ∝
K∏

k=1

µαk−1
k (2.37)

where 0 � µk � 1 and
∑

k µk = 1. Here α1, . . . , αK are the parameters of the
distribution, and α denotes (α1, . . . , αK)T. Note that, because of the summation
constraint, the distribution over the space of the {µk} is confined to a simplex of
dimensionality K − 1, as illustrated for K = 3 in Figure 2.4.

The normalized form for this distribution is byExercise 2.9

Dir(µ|α) =
Γ(α0)

Γ(α1) · · ·Γ(αK)

K∏
k=1

µαk−1
k (2.38)

which is called the Dirichlet distribution. Here Γ(x) is the gamma function defined
by (1.141) while

α0 =
K∑

k=1

αk. (2.39)
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Figure 2.4 The Dirichlet distribution over three variables µ1, µ2, µ3

is confined to a simplex (a bounded linear manifold) of
the form shown, as a consequence of the constraints
0 � µk � 1 and

P
k µk = 1.

µ1

µ2

µ3

Plots of the Dirichlet distribution over the simplex, for various settings of the param-
eters αk, are shown in Figure 2.5.

Multiplying the prior (2.38) by the likelihood function (2.34), we obtain the
posterior distribution for the parameters {µk} in the form

p(µ|D, α) ∝ p(D|µ)p(µ|α) ∝
K∏

k=1

µαk+mk−1
k . (2.40)

We see that the posterior distribution again takes the form of a Dirichlet distribution,
confirming that the Dirichlet is indeed a conjugate prior for the multinomial. This
allows us to determine the normalization coefficient by comparison with (2.38) so
that

p(µ|D, α) = Dir(µ|α + m)

=
Γ(α0 + N)

Γ(α1 + m1) · · ·Γ(αK + mK)

K∏
k=1

µαk+mk−1
k (2.41)

where we have denoted m = (m1, . . . , mK)T. As for the case of the binomial
distribution with its beta prior, we can interpret the parameters αk of the Dirichlet
prior as an effective number of observations of xk = 1.

Note that two-state quantities can either be represented as binary variables and

Lejeune Dirichlet
1805–1859

Johann Peter Gustav Lejeune
Dirichlet was a modest and re-
served mathematician who made
contributions in number theory, me-
chanics, and astronomy, and who
gave the first rigorous analysis of

Fourier series. His family originated from Richelet
in Belgium, and the name Lejeune Dirichlet comes

from ‘le jeune de Richelet’ (the young person from
Richelet). Dirichlet’s first paper, which was published
in 1825, brought him instant fame. It concerned Fer-
mat’s last theorem, which claims that there are no
positive integer solutions to xn + yn = zn for n > 2.
Dirichlet gave a partial proof for the case n = 5, which
was sent to Legendre for review and who in turn com-
pleted the proof. Later, Dirichlet gave a complete proof
for n = 14, although a full proof of Fermat’s last theo-
rem for arbitrary n had to wait until the work of Andrew
Wiles in the closing years of the 20th century.
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Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates
in the plane of the simplex and the vertical axis corresponds to the value of the density. Here {αk} = 0.1 on the
left plot, {αk} = 1 in the centre plot, and {αk} = 10 in the right plot.

modelled using the binomial distribution (2.9) or as 1-of-2 variables and modelled
using the multinomial distribution (2.34) with K = 2.

2.3. The Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the
distribution of continuous variables. In the case of a single variable x, the Gaussian
distribution can be written in the form

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(2.42)

where µ is the mean and σ2 is the variance. For a D-dimensional vector x, the
multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.43)

where µ is a D-dimensional mean vector, Σ is a D × D covariance matrix, and |Σ|
denotes the determinant of Σ.

The Gaussian distribution arises in many different contexts and can be motivated
from a variety of different perspectives. For example, we have already seen that forSection 1.6
a single real variable, the distribution that maximizes the entropy is the Gaussian.
This property applies also to the multivariate Gaussian.Exercise 2.14

Another situation in which the Gaussian distribution arises is when we consider
the sum of multiple random variables. The central limit theorem (due to Laplace)
tells us that, subject to certain mild conditions, the sum of a set of random variables,
which is of course itself a random variable, has a distribution that becomes increas-
ingly Gaussian as the number of terms in the sum increases (Walker, 1969). We can
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Figure 2.6 Histogram plots of the mean of N uniformly distributed numbers for various values of N . We
observe that as N increases, the distribution tends towards a Gaussian.

illustrate this by considering N variables x1, . . . , xN each of which has a uniform
distribution over the interval [0, 1] and then considering the distribution of the mean
(x1 + · · ·+ xN )/N . For large N , this distribution tends to a Gaussian, as illustrated
in Figure 2.6. In practice, the convergence to a Gaussian as N increases can be
very rapid. One consequence of this result is that the binomial distribution (2.9),
which is a distribution over m defined by the sum of N observations of the random
binary variable x, will tend to a Gaussian as N → ∞ (see Figure 2.1 for the case of
N = 10).

The Gaussian distribution has many important analytical properties, and we shall
consider several of these in detail. As a result, this section will be rather more tech-
nically involved than some of the earlier sections, and will require familiarity with
various matrix identities. However, we strongly encourage the reader to become pro-Appendix C
ficient in manipulating Gaussian distributions using the techniques presented here as
this will prove invaluable in understanding the more complex models presented in
later chapters.

We begin by considering the geometrical form of the Gaussian distribution. The

Carl Friedrich Gauss
1777–1855

It is said that when Gauss went
to elementary school at age 7, his
teacher Büttner, trying to keep the
class occupied, asked the pupils to
sum the integers from 1 to 100. To
the teacher’s amazement, Gauss

arrived at the answer in a matter of moments by noting
that the sum can be represented as 50 pairs (1 + 100,
2+99, etc.) each of which added to 101, giving the an-
swer 5,050. It is now believed that the problem which
was actually set was of the same form but somewhat
harder in that the sequence had a larger starting value
and a larger increment. Gauss was a German math-

ematician and scientist with a reputation for being a
hard-working perfectionist. One of his many contribu-
tions was to show that least squares can be derived
under the assumption of normally distributed errors.
He also created an early formulation of non-Euclidean
geometry (a self-consistent geometrical theory that vi-
olates the axioms of Euclid) but was reluctant to dis-
cuss it openly for fear that his reputation might suffer
if it were seen that he believed in such a geometry.
At one point, Gauss was asked to conduct a geodetic
survey of the state of Hanover, which led to his for-
mulation of the normal distribution, now also known
as the Gaussian. After his death, a study of his di-
aries revealed that he had discovered several impor-
tant mathematical results years or even decades be-
fore they were published by others.
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functional dependence of the Gaussian on x is through the quadratic form

∆2 = (x − µ)TΣ−1(x − µ) (2.44)

which appears in the exponent. The quantity ∆ is called the Mahalanobis distance
from µ to x and reduces to the Euclidean distance when Σ is the identity matrix. The
Gaussian distribution will be constant on surfaces in x-space for which this quadratic
form is constant.

First of all, we note that the matrix Σ can be taken to be symmetric, without
loss of generality, because any antisymmetric component would disappear from the
exponent. Now consider the eigenvector equation for the covariance matrixExercise 2.17

Σui = λiui (2.45)

where i = 1, . . . , D. Because Σ is a real, symmetric matrix its eigenvalues will be
real, and its eigenvectors can be chosen to form an orthonormal set, so thatExercise 2.18

uT
i uj = Iij (2.46)

where Iij is the i, j element of the identity matrix and satisfies

Iij =
{

1, if i = j
0, otherwise. (2.47)

The covariance matrix Σ can be expressed as an expansion in terms of its eigenvec-
tors in the formExercise 2.19

Σ =
D∑

i=1

λiuiuT
i (2.48)

and similarly the inverse covariance matrix Σ−1 can be expressed as

Σ−1 =
D∑

i=1

1
λi

uiuT
i . (2.49)

Substituting (2.49) into (2.44), the quadratic form becomes

∆2 =
D∑

i=1

y2
i

λi
(2.50)

where we have defined
yi = uT

i (x − µ). (2.51)

We can interpret {yi} as a new coordinate system defined by the orthonormal vectors
ui that are shifted and rotated with respect to the original xi coordinates. Forming
the vector y = (y1, . . . , yD)T, we have

y = U(x − µ) (2.52)
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Figure 2.7 The red curve shows the ellip-
tical surface of constant proba-
bility density for a Gaussian in
a two-dimensional space x =
(x1, x2) on which the density
is exp(−1/2) of its value at
x = µ. The major axes of
the ellipse are defined by the
eigenvectors ui of the covari-
ance matrix, with correspond-
ing eigenvalues λi.
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x2

λ
1/2
1

λ
1/2
2

y1

y2

u1

u2

µ

where U is a matrix whose rows are given by uT
i . From (2.46) it follows that U is

an orthogonal matrix, i.e., it satisfies UUT = I, and hence also UTU = I, where IAppendix C
is the identity matrix.

The quadratic form, and hence the Gaussian density, will be constant on surfaces
for which (2.51) is constant. If all of the eigenvalues λi are positive, then these
surfaces represent ellipsoids, with their centres at µ and their axes oriented along ui,
and with scaling factors in the directions of the axes given by λ

1/2
i , as illustrated in

Figure 2.7.
For the Gaussian distribution to be well defined, it is necessary for all of the

eigenvalues λi of the covariance matrix to be strictly positive, otherwise the dis-
tribution cannot be properly normalized. A matrix whose eigenvalues are strictly
positive is said to be positive definite. In Chapter 12, we will encounter Gaussian
distributions for which one or more of the eigenvalues are zero, in which case the
distribution is singular and is confined to a subspace of lower dimensionality. If all
of the eigenvalues are nonnegative, then the covariance matrix is said to be positive
semidefinite.

Now consider the form of the Gaussian distribution in the new coordinate system
defined by the yi. In going from the x to the y coordinate system, we have a Jacobian
matrix J with elements given by

Jij =
∂xi

∂yj
= Uji (2.53)

where Uji are the elements of the matrix UT. Using the orthonormality property of
the matrix U, we see that the square of the determinant of the Jacobian matrix is

|J|2 =
∣∣UT

∣∣2 =
∣∣UT

∣∣ |U| =
∣∣UTU

∣∣ = |I| = 1 (2.54)

and hence |J| = 1. Also, the determinant |Σ| of the covariance matrix can be written
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as the product of its eigenvalues, and hence

|Σ|1/2 =
D∏

j=1

λ
1/2
j . (2.55)

Thus in the yj coordinate system, the Gaussian distribution takes the form

p(y) = p(x)|J| =
D∏

j=1

1
(2πλj)1/2

exp
{
− y2

j

2λj

}
(2.56)

which is the product of D independent univariate Gaussian distributions. The eigen-
vectors therefore define a new set of shifted and rotated coordinates with respect
to which the joint probability distribution factorizes into a product of independent
distributions. The integral of the distribution in the y coordinate system is then∫

p(y) dy =
D∏

j=1

∫ ∞

−∞

1
(2πλj)1/2

exp
{
− y2

j

2λj

}
dyj = 1 (2.57)

where we have used the result (1.48) for the normalization of the univariate Gaussian.
This confirms that the multivariate Gaussian (2.43) is indeed normalized.

We now look at the moments of the Gaussian distribution and thereby provide an
interpretation of the parameters µ and Σ. The expectation of x under the Gaussian
distribution is given by

E[x] =
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
xdx

=
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
(z + µ) dz (2.58)

where we have changed variables using z = x − µ. We now note that the exponent
is an even function of the components of z and, because the integrals over these are
taken over the range (−∞,∞), the term in z in the factor (z + µ) will vanish by
symmetry. Thus

E[x] = µ (2.59)

and so we refer to µ as the mean of the Gaussian distribution.
We now consider second order moments of the Gaussian. In the univariate case,

we considered the second order moment given by E[x2]. For the multivariate Gaus-
sian, there are D2 second order moments given by E[xixj ], which we can group
together to form the matrix E[xxT]. This matrix can be written as

E[xxT] =
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
xxT dx

=
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
(z + µ)(z + µ)T dz
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where again we have changed variables using z = x − µ. Note that the cross-terms
involving µzT and µTz will again vanish by symmetry. The term µµT is constant
and can be taken outside the integral, which itself is unity because the Gaussian
distribution is normalized. Consider the term involving zzT. Again, we can make
use of the eigenvector expansion of the covariance matrix given by (2.45), together
with the completeness of the set of eigenvectors, to write

z =
D∑

j=1

yjuj (2.60)

where yj = uT
j z, which gives

1
(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
zzT dz

=
1

(2π)D/2

1
|Σ|1/2

D∑
i=1

D∑
j=1

uiuT
j

∫
exp

{
−

D∑
k=1

y2
k

2λk

}
yiyj dy

=
D∑

i=1

uiuT
i λi = Σ (2.61)

where we have made use of the eigenvector equation (2.45), together with the fact
that the integral on the right-hand side of the middle line vanishes by symmetry
unless i = j, and in the final line we have made use of the results (1.50) and (2.55),
together with (2.48). Thus we have

E[xxT] = µµT + Σ. (2.62)

For single random variables, we subtracted the mean before taking second mo-
ments in order to define a variance. Similarly, in the multivariate case it is again
convenient to subtract off the mean, giving rise to the covariance of a random vector
x defined by

cov[x] = E
[
(x − E[x])(x − E[x])T

]
. (2.63)

For the specific case of a Gaussian distribution, we can make use of E[x] = µ,
together with the result (2.62), to give

cov[x] = Σ. (2.64)

Because the parameter matrix Σ governs the covariance of x under the Gaussian
distribution, it is called the covariance matrix.

Although the Gaussian distribution (2.43) is widely used as a density model, it
suffers from some significant limitations. Consider the number of free parameters in
the distribution. A general symmetric covariance matrix Σ will have D(D + 1)/2
independent parameters, and there are another D independent parameters in µ, giv-Exercise 2.21
ing D(D + 3)/2 parameters in total. For large D, the total number of parameters
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Figure 2.8 Contours of constant
probability density for a Gaussian
distribution in two dimensions in
which the covariance matrix is (a) of
general form, (b) diagonal, in which
the elliptical contours are aligned
with the coordinate axes, and (c)
proportional to the identity matrix, in
which the contours are concentric
circles.
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of
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such complex distributions is that of probabilistic graphical models, which will form
the subject of Chapter 8.

2.3.1 Conditional Gaussian distributions
An important property of the multivariate Gaussian distribution is that if two

sets of variables are jointly Gaussian, then the conditional distribution of one set
conditioned on the other is again Gaussian. Similarly, the marginal distribution of
either set is also Gaussian.

Consider first the case of conditional distributions. Suppose x is a D-dimensional
vector with Gaussian distribution N (x|µ,Σ) and that we partition x into two dis-
joint subsets xa and xb. Without loss of generality, we can take xa to form the first
M components of x, with xb comprising the remaining D−M components, so that

x =
(

xa

xb

)
. (2.65)

We also define corresponding partitions of the mean vector µ given by

µ =
(

µa

µb

)
(2.66)

and of the covariance matrix Σ given by

Σ =
(

Σaa Σab

Σba Σbb

)
. (2.67)

Note that the symmetry ΣT = Σ of the covariance matrix implies that Σaa and Σbb

are symmetric, while Σba = ΣT
ab.

In many situations, it will be convenient to work with the inverse of the covari-
ance matrix

Λ ≡ Σ−1 (2.68)

which is known as the precision matrix. In fact, we shall see that some properties
of Gaussian distributions are most naturally expressed in terms of the covariance,
whereas others take a simpler form when viewed in terms of the precision. We
therefore also introduce the partitioned form of the precision matrix

Λ =
(

Λaa Λab

Λba Λbb

)
(2.69)

corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that Λaa and Λbb are symmetric, whileExercise 2.22
ΛT

ab = Λba. It should be stressed at this point that, for instance, Λaa is not simply
given by the inverse of Σaa. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(xa|xb).
From the product rule of probability, we see that this conditional distribution can be
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

−1
2
(x − µ)TΣ−1(x − µ) =

−1
2
(xa − µa)TΛaa(xa − µa) − 1

2
(xa − µa)TΛab(xb − µb)

−1
2
(xb − µb)

TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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Now consider all of the terms in (2.70) that are linear in xa

xT
a {Λaaµa − Λab(xb − µb)} (2.74)

where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence

µa|b = Σa|b {Λaaµa − Λab(xb − µb)}
= µa − Λ−1

aa Λab(xb − µb) (2.75)

where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision

matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
of the following identity for the inverse of a partitioned matrixExercise 2.24 (

A B
C D

)−1

=
(

M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)
(2.76)

where we have defined
M = (A − BD−1C)−1. (2.77)

The quantity M−1 is known as the Schur complement of the matrix on the left-hand
side of (2.76) with respect to the submatrix D. Using the definition(

Σaa Σab

Σba Σbb

)−1

=
(

Λaa Λab

Λba Λbb

)
(2.78)

and making use of (2.76), we have

Λaa = (Σaa − ΣabΣ−1
bb Σba)−1 (2.79)

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb . (2.80)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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2.3.2 Marginal Gaussian distributions
We have seen that if a joint distribution p(xa,xb) is Gaussian, then the condi-

tional distribution p(xa|xb) will again be Gaussian. Now we turn to a discussion of
the marginal distribution given by

p(xa) =
∫

p(xa,xb) dxb (2.83)

which, as we shall see, is also Gaussian. Once again, our strategy for evaluating this
distribution efficiently will be to focus on the quadratic form in the exponent of the
joint distribution and thereby to identify the mean and covariance of the marginal
distribution p(xa).

The quadratic form for the joint distribution can be expressed, using the par-
titioned precision matrix, in the form (2.70). Because our goal is to integrate out
xb, this is most easily achieved by first considering the terms involving xb and then
completing the square in order to facilitate integration. Picking out just those terms
that involve xb, we have

−1
2
xT

b Λbbxb+xT
b m = −1

2
(xb−Λ−1

bb m)TΛbb(xb−Λ−1
bb m)+

1
2
mTΛ−1

bb m (2.84)

where we have defined

m = Λbbµb − Λba(xa − µa). (2.85)

We see that the dependence on xb has been cast into the standard quadratic form of a
Gaussian distribution corresponding to the first term on the right-hand side of (2.84),
plus a term that does not depend on xb (but that does depend on xa). Thus, when
we take the exponential of this quadratic form, we see that the integration over xb

required by (2.83) will take the form∫
exp

{
−1

2
(xb − Λ−1

bb m)TΛbb(xb − Λ−1
bb m)

}
dxb. (2.86)

This integration is easily performed by noting that it is the integral over an unnor-
malized Gaussian, and so the result will be the reciprocal of the normalization co-
efficient. We know from the form of the normalized Gaussian given by (2.43), that
this coefficient is independent of the mean and depends only on the determinant of
the covariance matrix. Thus, by completing the square with respect to xb, we can
integrate out xb and the only term remaining from the contributions on the left-hand
side of (2.84) that depends on xa is the last term on the right-hand side of (2.84) in
which m is given by (2.85). Combining this term with the remaining terms from
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(2.70) that depend on xa, we obtain

1
2

[Λbbµb − Λba(xa − µa)]T Λ−1
bb [Λbbµb − Λba(xa − µa)]

−1
2
xT

a Λaaxa + xT
a (Λaaµa + Λabµb) + const

= −1
2
xT

a (Λaa − ΛabΛ−1
bb Λba)xa

+xT
a (Λaa − ΛabΛ−1

bb Λba)−1µa + const (2.87)

where ‘const’ denotes quantities independent of xa. Again, by comparison with
(2.71), we see that the covariance of the marginal distribution of p(xa) is given by

Σa = (Λaa − ΛabΛ−1
bb Λba)−1. (2.88)

Similarly, the mean is given by

Σa(Λaa − ΛabΛ−1
bb Λba)µa = µa (2.89)

where we have used (2.88). The covariance in (2.88) is expressed in terms of the
partitioned precision matrix given by (2.69). We can rewrite this in terms of the
corresponding partitioning of the covariance matrix given by (2.67), as we did for
the conditional distribution. These partitioned matrices are related by(

Λaa Λab

Λba Λbb

)−1

=
(

Σaa Σab

Σba Σbb

)
(2.90)

Making use of (2.76), we then have(
Λaa − ΛabΛ−1

bb Λba

)−1
= Σaa. (2.91)

Thus we obtain the intuitively satisfying result that the marginal distribution p(xa)
has mean and covariance given by

E[xa] = µa (2.92)

cov[xa] = Σaa. (2.93)

We see that for a marginal distribution, the mean and covariance are most simply ex-
pressed in terms of the partitioned covariance matrix, in contrast to the conditional
distribution for which the partitioned precision matrix gives rise to simpler expres-
sions.

Our results for the marginal and conditional distributions of a partitioned Gaus-
sian are summarized below.

Partitioned Gaussians

Given a joint Gaussian distribution N (x|µ,Σ) with Λ ≡ Σ−1 and

x =
(

xa

xb

)
, µ =

(
µa

µb

)
(2.94)
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xa

xb = 0.7
xb

p(xa, xb)
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Figure 2.9 The plot on the left shows the contours of a Gaussian distribution p(xa, xb) over two variables, and
the plot on the right shows the marginal distribution p(xa) (blue curve) and the conditional distribution p(xa|xb)
for xb = 0.7 (red curve).

Σ =
(

Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)
. (2.95)

Conditional distribution:

p(xa|xb) = N (x|µa|b,Λ
−1
aa ) (2.96)

µa|b = µa − Λ−1
aa Λab(xb − µb). (2.97)

Marginal distribution:

p(xa) = N (xa|µa,Σaa). (2.98)

We illustrate the idea of conditional and marginal distributions associated with
a multivariate Gaussian using an example involving two variables in Figure 2.9.

2.3.3 Bayes’ theorem for Gaussian variables
In Sections 2.3.1 and 2.3.2, we considered a Gaussian p(x) in which we parti-

tioned the vector x into two subvectors x = (xa,xb) and then found expressions for
the conditional distribution p(xa|xb) and the marginal distribution p(xa). We noted
that the mean of the conditional distribution p(xa|xb) was a linear function of xb.
Here we shall suppose that we are given a Gaussian marginal distribution p(x) and a
Gaussian conditional distribution p(y|x) in which p(y|x) has a mean that is a linear
function of x, and a covariance which is independent of x. This is an example of
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a linear Gaussian model (Roweis and Ghahramani, 1999), which we shall study in
greater generality in Section 8.1.4. We wish to find the marginal distribution p(y)
and the conditional distribution p(x|y). This is a problem that will arise frequently
in subsequent chapters, and it will prove convenient to derive the general results here.

We shall take the marginal and conditional distributions to be

p(x) = N (
x|µ,Λ−1

)
(2.99)

p(y|x) = N (
y|Ax + b,L−1

)
(2.100)

where µ, A, and b are parameters governing the means, and Λ and L are precision
matrices. If x has dimensionality M and y has dimensionality D, then the matrix A
has size D × M .

First we find an expression for the joint distribution over x and y. To do this, we
define

z =
(

x
y

)
(2.101)

and then consider the log of the joint distribution

ln p(z) = ln p(x) + ln p(y|x)

= −1
2
(x − µ)TΛ(x − µ)

−1
2
(y − Ax − b)TL(y − Ax − b) + const (2.102)

where ‘const’ denotes terms independent of x and y. As before, we see that this is a
quadratic function of the components of z, and hence p(z) is Gaussian distribution.
To find the precision of this Gaussian, we consider the second order terms in (2.102),
which can be written as

−1
2
xT(Λ + ATLA)x − 1

2
yTLy +

1
2
yTLAx +

1
2
xTATLy

= −1
2

(
x
y

)T(
Λ + ATLA −ATL

−LA L

)(
x
y

)
= −1

2
zTRz (2.103)

and so the Gaussian distribution over z has precision (inverse covariance) matrix
given by

R =
(

Λ + ATLA −ATL
−LA L

)
. (2.104)

The covariance matrix is found by taking the inverse of the precision, which can be
done using the matrix inversion formula (2.76) to giveExercise 2.29

cov[z] = R−1 =
(

Λ−1 Λ−1AT

AΛ−1 L−1 + AΛ−1AT

)
. (2.105)
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Similarly, we can find the mean of the Gaussian distribution over z by identify-
ing the linear terms in (2.102), which are given by

xTΛµ − xTATLb + yTLb =
(

x
y

)T(
Λµ − ATLb

Lb

)
. (2.106)

Using our earlier result (2.71) obtained by completing the square over the quadratic
form of a multivariate Gaussian, we find that the mean of z is given by

E[z] = R−1

(
Λµ − ATLb

Lb

)
. (2.107)

Making use of (2.105), we then obtainExercise 2.30

E[z] =
(

µ
Aµ + b

)
. (2.108)

Next we find an expression for the marginal distribution p(y) in which we have
marginalized over x. Recall that the marginal distribution over a subset of the com-
ponents of a Gaussian random vector takes a particularly simple form when ex-
pressed in terms of the partitioned covariance matrix. Specifically, its mean andSection 2.3
covariance are given by (2.92) and (2.93), respectively. Making use of (2.105) and
(2.108) we see that the mean and covariance of the marginal distribution p(y) are
given by

E[y] = Aµ + b (2.109)

cov[y] = L−1 + AΛ−1AT. (2.110)

A special case of this result is when A = I, in which case it reduces to the convolu-
tion of two Gaussians, for which we see that the mean of the convolution is the sum
of the mean of the two Gaussians, and the covariance of the convolution is the sum
of their covariances.

Finally, we seek an expression for the conditional p(x|y). Recall that the results
for the conditional distribution are most easily expressed in terms of the partitioned
precision matrix, using (2.73) and (2.75). Applying these results to (2.105) andSection 2.3
(2.108) we see that the conditional distribution p(x|y) has mean and covariance
given by

E[x|y] = (Λ + ATLA)−1
{
ATL(y − b) + Λµ

}
(2.111)

cov[x|y] = (Λ + ATLA)−1. (2.112)

The evaluation of this conditional can be seen as an example of Bayes’ theorem.
We can interpret the distribution p(x) as a prior distribution over x. If the variable
y is observed, then the conditional distribution p(x|y) represents the corresponding
posterior distribution over x. Having found the marginal and conditional distribu-
tions, we effectively expressed the joint distribution p(z) = p(x)p(y|x) in the form
p(x|y)p(y). These results are summarized below.
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Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for x and a conditional Gaussian distri-
bution for y given x in the form

p(x) = N (x|µ,Λ−1) (2.113)

p(y|x) = N (y|Ax + b,L−1) (2.114)

the marginal distribution of y and the conditional distribution of x given y are
given by

p(y) = N (y|Aµ + b,L−1 + AΛ−1AT) (2.115)

p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ) (2.116)

where
Σ = (Λ + ATLA)−1. (2.117)

2.3.4 Maximum likelihood for the Gaussian
Given a data set X = (x1, . . . ,xN )T in which the observations {xn} are as-

sumed to be drawn independently from a multivariate Gaussian distribution, we can
estimate the parameters of the distribution by maximum likelihood. The log likeli-
hood function is given by

ln p(X|µ,Σ) = −ND

2
ln(2π)−N

2
ln |Σ|−1

2

N∑
n=1

(xn−µ)TΣ−1(xn−µ). (2.118)

By simple rearrangement, we see that the likelihood function depends on the data set
only through the two quantities

N∑
n=1

xn,

N∑
n=1

xnxT
n . (2.119)

These are known as the sufficient statistics for the Gaussian distribution. Using
(C.19), the derivative of the log likelihood with respect to µ is given byAppendix C

∂

∂µ
ln p(X|µ,Σ) =

N∑
n=1

Σ−1(xn − µ) (2.120)

and setting this derivative to zero, we obtain the solution for the maximum likelihood
estimate of the mean given by

µML =
1
N

N∑
n=1

xn (2.121)
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which is the mean of the observed set of data points. The maximization of (2.118)
with respect to Σ is rather more involved. The simplest approach is to ignore the
symmetry constraint and show that the resulting solution is symmetric as required.Exercise 2.34
Alternative derivations of this result, which impose the symmetry and positive defi-
niteness constraints explicitly, can be found in Magnus and Neudecker (1999). The
result is as expected and takes the form

ΣML =
1
N

N∑
n=1

(xn − µML)(xn − µML)T (2.122)

which involves µML because this is the result of a joint maximization with respect
to µ and Σ. Note that the solution (2.121) for µML does not depend on ΣML, and so
we can first evaluate µML and then use this to evaluate ΣML.

If we evaluate the expectations of the maximum likelihood solutions under the
true distribution, we obtain the following resultsExercise 2.35

E[µML] = µ (2.123)

E[ΣML] =
N − 1

N
Σ. (2.124)

We see that the expectation of the maximum likelihood estimate for the mean is equal
to the true mean. However, the maximum likelihood estimate for the covariance has
an expectation that is less than the true value, and hence it is biased. We can correct
this bias by defining a different estimator Σ̃ given by

Σ̃ =
1

N − 1

N∑
n=1

(xn − µML)(xn − µML)T. (2.125)

Clearly from (2.122) and (2.124), the expectation of Σ̃ is equal to Σ.

2.3.5 Sequential estimation
Our discussion of the maximum likelihood solution for the parameters of a Gaus-

sian distribution provides a convenient opportunity to give a more general discussion
of the topic of sequential estimation for maximum likelihood. Sequential methods
allow data points to be processed one at a time and then discarded and are important
for on-line applications, and also where large data sets are involved so that batch
processing of all data points at once is infeasible.

Consider the result (2.121) for the maximum likelihood estimator of the mean
µML, which we will denote by µ

(N)
ML when it is based on N observations. If we
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Figure 2.10 A schematic illustration of two correlated ran-
dom variables z and θ, together with the
regression function f(θ) given by the con-
ditional expectation E[z|θ]. The Robbins-
Monro algorithm provides a general sequen-
tial procedure for finding the root θ� of such
functions. θ

z

θ�

f(θ)

dissect out the contribution from the final data point xN , we obtain

µ
(N)
ML =

1
N

N∑
n=1

xn

=
1
N

xN +
1
N

N−1∑
n=1

xn

=
1
N

xN +
N − 1

N
µ

(N−1)
ML

= µ
(N−1)
ML +

1
N

(xN − µ
(N−1)
ML ). (2.126)

This result has a nice interpretation, as follows. After observing N − 1 data points
we have estimated µ by µ

(N−1)
ML . We now observe data point xN , and we obtain our

revised estimate µ
(N)
ML by moving the old estimate a small amount, proportional to

1/N , in the direction of the ‘error signal’ (xN −µ
(N−1)
ML ). Note that, as N increases,

so the contribution from successive data points gets smaller.
The result (2.126) will clearly give the same answer as the batch result (2.121)

because the two formulae are equivalent. However, we will not always be able to de-
rive a sequential algorithm by this route, and so we seek a more general formulation
of sequential learning, which leads us to the Robbins-Monro algorithm. Consider a
pair of random variables θ and z governed by a joint distribution p(z, θ). The con-
ditional expectation of z given θ defines a deterministic function f(θ) that is given
by

f(θ) ≡ E[z|θ] =
∫

zp(z|θ) dz (2.127)

and is illustrated schematically in Figure 2.10. Functions defined in this way are
called regression functions.

Our goal is to find the root θ� at which f(θ�) = 0. If we had a large data set
of observations of z and θ, then we could model the regression function directly and
then obtain an estimate of its root. Suppose, however, that we observe values of
z one at a time and we wish to find a corresponding sequential estimation scheme
for θ�. The following general procedure for solving such problems was given by
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Robbins and Monro (1951). We shall assume that the conditional variance of z is
finite so that

E
[
(z − f)2 | θ] < ∞ (2.128)

and we shall also, without loss of generality, consider the case where f(θ) > 0 for
θ > θ� and f(θ) < 0 for θ < θ�, as is the case in Figure 2.10. The Robbins-Monro
procedure then defines a sequence of successive estimates of the root θ� given by

θ(N) = θ(N−1) + aN−1z(θ(N−1)) (2.129)

where z(θ(N)) is an observed value of z when θ takes the value θ(N). The coefficients
{aN} represent a sequence of positive numbers that satisfy the conditions

lim
N→∞

aN = 0 (2.130)

∞∑
N=1

aN = ∞ (2.131)

∞∑
N=1

a2
N < ∞. (2.132)

It can then be shown (Robbins and Monro, 1951; Fukunaga, 1990) that the sequence
of estimates given by (2.129) does indeed converge to the root with probability one.
Note that the first condition (2.130) ensures that the successive corrections decrease
in magnitude so that the process can converge to a limiting value. The second con-
dition (2.131) is required to ensure that the algorithm does not converge short of the
root, and the third condition (2.132) is needed to ensure that the accumulated noise
has finite variance and hence does not spoil convergence.

Now let us consider how a general maximum likelihood problem can be solved
sequentially using the Robbins-Monro algorithm. By definition, the maximum like-
lihood solution θML is a stationary point of the log likelihood function and hence
satisfies

∂

∂θ

{
1
N

N∑
n=1

ln p(xn|θ)
}∣∣∣∣∣

θML

= 0. (2.133)

Exchanging the derivative and the summation, and taking the limit N → ∞ we have

lim
N→∞

1
N

N∑
n=1

∂

∂θ
ln p(xn|θ) = Ex

[
∂

∂θ
ln p(x|θ)

]
(2.134)

and so we see that finding the maximum likelihood solution corresponds to find-
ing the root of a regression function. We can therefore apply the Robbins-Monro
procedure, which now takes the form

θ(N) = θ(N−1) + aN−1
∂

∂θ(N−1)
ln p(xN |θ(N−1)). (2.135)
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Figure 2.11 In the case of a Gaussian distribution, with θ
corresponding to the mean µ, the regression
function illustrated in Figure 2.10 takes the form
of a straight line, as shown in red. In this
case, the random variable z corresponds to the
derivative of the log likelihood function and is
given by (x−µML)/σ2, and its expectation that
defines the regression function is a straight line
given by (µ − µML)/σ2. The root of the regres-
sion function corresponds to the maximum like-
lihood estimator µML.

µ

z

p(z|µ)

µML

As a specific example, we consider once again the sequential estimation of the
mean of a Gaussian distribution, in which case the parameter θ(N) is the estimate
µ

(N)
ML of the mean of the Gaussian, and the random variable z is given by

z =
∂

∂µML

ln p(x|µML, σ2) =
1
σ2

(x − µML). (2.136)

Thus the distribution of z is Gaussian with mean µ − µML, as illustrated in Fig-
ure 2.11. Substituting (2.136) into (2.135), we obtain the univariate form of (2.126),
provided we choose the coefficients aN to have the form aN = σ2/N . Note that
although we have focussed on the case of a single variable, the same technique,
together with the same restrictions (2.130)–(2.132) on the coefficients aN , apply
equally to the multivariate case (Blum, 1965).

2.3.6 Bayesian inference for the Gaussian
The maximum likelihood framework gave point estimates for the parameters µ

and Σ. Now we develop a Bayesian treatment by introducing prior distributions
over these parameters. Let us begin with a simple example in which we consider a
single Gaussian random variable x. We shall suppose that the variance σ2 is known,
and we consider the task of inferring the mean µ given a set of N observations
X = {x1, . . . , xN}. The likelihood function, that is the probability of the observed
data given µ, viewed as a function of µ, is given by

p(X|µ) =
N∏

n=1

p(xn|µ) =
1

(2πσ2)N/2
exp

{
− 1

2σ2

N∑
n=1

(xn − µ)2
}

. (2.137)

Again we emphasize that the likelihood function p(X|µ) is not a probability distri-
bution over µ and is not normalized.

We see that the likelihood function takes the form of the exponential of a quad-
ratic form in µ. Thus if we choose a prior p(µ) given by a Gaussian, it will be a
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conjugate distribution for this likelihood function because the corresponding poste-
rior will be a product of two exponentials of quadratic functions of µ and hence will
also be Gaussian. We therefore take our prior distribution to be

p(µ) = N (
µ|µ0, σ

2
0

)
(2.138)

and the posterior distribution is given by

p(µ|X) ∝ p(X|µ)p(µ). (2.139)

Simple manipulation involving completing the square in the exponent shows that theExercise 2.38
posterior distribution is given by

p(µ|X) = N (
µ|µN , σ2

N

)
(2.140)

where

µN =
σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

µML (2.141)

1
σ2

N

=
1
σ2

0

+
N

σ2
(2.142)

in which µML is the maximum likelihood solution for µ given by the sample mean

µML =
1
N

N∑
n=1

xn. (2.143)

It is worth spending a moment studying the form of the posterior mean and
variance. First of all, we note that the mean of the posterior distribution given by
(2.141) is a compromise between the prior mean µ0 and the maximum likelihood
solution µML. If the number of observed data points N = 0, then (2.141) reduces
to the prior mean as expected. For N → ∞, the posterior mean is given by the
maximum likelihood solution. Similarly, consider the result (2.142) for the variance
of the posterior distribution. We see that this is most naturally expressed in terms
of the inverse variance, which is called the precision. Furthermore, the precisions
are additive, so that the precision of the posterior is given by the precision of the
prior plus one contribution of the data precision from each of the observed data
points. As we increase the number of observed data points, the precision steadily
increases, corresponding to a posterior distribution with steadily decreasing variance.
With no observed data points, we have the prior variance, whereas if the number of
data points N → ∞, the variance σ2

N goes to zero and the posterior distribution
becomes infinitely peaked around the maximum likelihood solution. We therefore
see that the maximum likelihood result of a point estimate for µ given by (2.143) is
recovered precisely from the Bayesian formalism in the limit of an infinite number
of observations. Note also that for finite N , if we take the limit σ2

0 → ∞ in which the
prior has infinite variance then the posterior mean (2.141) reduces to the maximum
likelihood result, while from (2.142) the posterior variance is given by σ2

N = σ2/N .
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Figure 2.12 Illustration of Bayesian inference for
the mean µ of a Gaussian distri-
bution, in which the variance is as-
sumed to be known. The curves
show the prior distribution over µ
(the curve labelled N = 0), which
in this case is itself Gaussian, along
with the posterior distribution given
by (2.140) for increasing numbers N
of data points. The data points are
generated from a Gaussian of mean
0.8 and variance 0.1, and the prior is
chosen to have mean 0. In both the
prior and the likelihood function, the
variance is set to the true value.
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We illustrate our analysis of Bayesian inference for the mean of a Gaussian
distribution in Figure 2.12. The generalization of this result to the case of a D-
dimensional Gaussian random variable x with known covariance and unknown mean
is straightforward.Exercise 2.40

We have already seen how the maximum likelihood expression for the mean of
a Gaussian can be re-cast as a sequential update formula in which the mean afterSection 2.3.5
observing N data points was expressed in terms of the mean after observing N − 1
data points together with the contribution from data point xN . In fact, the Bayesian
paradigm leads very naturally to a sequential view of the inference problem. To see
this in the context of the inference of the mean of a Gaussian, we write the posterior
distribution with the contribution from the final data point xN separated out so that

p(µ|D) ∝
[
p(µ)

N−1∏
n=1

p(xn|µ)

]
p(xN |µ). (2.144)

The term in square brackets is (up to a normalization coefficient) just the posterior
distribution after observing N − 1 data points. We see that this can be viewed as
a prior distribution, which is combined using Bayes’ theorem with the likelihood
function associated with data point xN to arrive at the posterior distribution after
observing N data points. This sequential view of Bayesian inference is very general
and applies to any problem in which the observed data are assumed to be independent
and identically distributed.

So far, we have assumed that the variance of the Gaussian distribution over the
data is known and our goal is to infer the mean. Now let us suppose that the mean
is known and we wish to infer the variance. Again, our calculations will be greatly
simplified if we choose a conjugate form for the prior distribution. It turns out to be
most convenient to work with the precision λ ≡ 1/σ2. The likelihood function for λ
takes the form

p(X|λ) =
N∏

n=1

N (xn|µ, λ−1) ∝ λN/2 exp

{
−λ

2

N∑
n=1

(xn − µ)2
}

. (2.145)
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Figure 2.13 Plot of the gamma distribution Gam(λ|a, b) defined by (2.146) for various values of the parameters
a and b.

The corresponding conjugate prior should therefore be proportional to the product
of a power of λ and the exponential of a linear function of λ. This corresponds to
the gamma distribution which is defined by

Gam(λ|a, b) =
1

Γ(a)
baλa−1 exp(−bλ). (2.146)

Here Γ(a) is the gamma function that is defined by (1.141) and that ensures that
(2.146) is correctly normalized. The gamma distribution has a finite integral if a > 0,Exercise 2.41
and the distribution itself is finite if a � 1. It is plotted, for various values of a and
b, in Figure 2.13. The mean and variance of the gamma distribution are given byExercise 2.42

E[λ] =
a

b
(2.147)

var[λ] =
a

b2
. (2.148)

Consider a prior distribution Gam(λ|a0, b0). If we multiply by the likelihood
function (2.145), then we obtain a posterior distribution

p(λ|X) ∝ λa0−1λN/2 exp

{
−b0λ − λ

2

N∑
n=1

(xn − µ)2
}

(2.149)

which we recognize as a gamma distribution of the form Gam(λ|aN , bN ) where

aN = a0 +
N

2
(2.150)

bN = b0 +
1
2

N∑
n=1

(xn − µ)2 = b0 +
N

2
σ2

ML (2.151)

where σ2
ML is the maximum likelihood estimator of the variance. Note that in (2.149)

there is no need to keep track of the normalization constants in the prior and the
likelihood function because, if required, the correct coefficient can be found at the
end using the normalized form (2.146) for the gamma distribution.
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From (2.150), we see that the effect of observing N data points is to increase
the value of the coefficient a by N/2. Thus we can interpret the parameter a0 in
the prior in terms of 2a0 ‘effective’ prior observations. Similarly, from (2.151) we
see that the N data points contribute Nσ2

ML/2 to the parameter b, where σ2
ML is

the variance, and so we can interpret the parameter b0 in the prior as arising from
the 2a0 ‘effective’ prior observations having variance 2b0/(2a0) = b0/a0. Recall
that we made an analogous interpretation for the Dirichlet prior. These distributionsSection 2.2
are examples of the exponential family, and we shall see that the interpretation of
a conjugate prior in terms of effective fictitious data points is a general one for the
exponential family of distributions.

Instead of working with the precision, we can consider the variance itself. The
conjugate prior in this case is called the inverse gamma distribution, although we
shall not discuss this further because we will find it more convenient to work with
the precision.

Now suppose that both the mean and the precision are unknown. To find a
conjugate prior, we consider the dependence of the likelihood function on µ and λ

p(X|µ, λ) =
N∏

n=1

(
λ

2π

)1/2

exp
{
−λ

2
(xn − µ)2

}

∝
[
λ1/2 exp

(
−λµ2

2

)]N

exp

{
λµ

N∑
n=1

xn − λ

2

N∑
n=1

x2
n

}
. (2.152)

We now wish to identify a prior distribution p(µ, λ) that has the same functional
dependence on µ and λ as the likelihood function and that should therefore take the
form

p(µ, λ) ∝
[
λ1/2 exp

(
−λµ2

2

)]β

exp {cλµ − dλ}

= exp
{
−βλ

2
(µ − c/β)2

}
λβ/2 exp

{
−
(

d − c2

2β

)
λ

}
(2.153)

where c, d, and β are constants. Since we can always write p(µ, λ) = p(µ|λ)p(λ),
we can find p(µ|λ) and p(λ) by inspection. In particular, we see that p(µ|λ) is a
Gaussian whose precision is a linear function of λ and that p(λ) is a gamma distri-
bution, so that the normalized prior takes the form

p(µ, λ) = N (µ|µ0, (βλ)−1)Gam(λ|a, b) (2.154)

where we have defined new constants given by µ0 = c/β, a = 1 + β/2, b =
d−c2/2β. The distribution (2.154) is called the normal-gamma or Gaussian-gamma
distribution and is plotted in Figure 2.14. Note that this is not simply the product
of an independent Gaussian prior over µ and a gamma prior over λ, because the
precision of µ is a linear function of λ. Even if we chose a prior in which µ and λ
were independent, the posterior distribution would exhibit a coupling between the
precision of µ and the value of λ.
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Figure 2.14 Contour plot of the normal-gamma
distribution (2.154) for parameter
values µ0 = 0, β = 2, a = 5 and
b = 6.

µ

λ

−2 0 2
0

1

2

In the case of the multivariate Gaussian distribution N (
x|µ,Λ−1

)
for a D-

dimensional variable x, the conjugate prior distribution for the mean µ, assuming
the precision is known, is again a Gaussian. For known mean and unknown precision
matrix Λ, the conjugate prior is the Wishart distribution given byExercise 2.45

W(Λ|W, ν) = B|Λ|(ν−D−1)/2 exp
(
−1

2
Tr(W−1Λ)

)
(2.155)

where ν is called the number of degrees of freedom of the distribution, W is a D×D
scale matrix, and Tr(·) denotes the trace. The normalization constant B is given by

B(W, ν) = |W|−ν/2

(
2νD/2 πD(D−1)/4

D∏
i=1

Γ
(

ν + 1 − i

2

))−1

. (2.156)

Again, it is also possible to define a conjugate prior over the covariance matrix itself,
rather than over the precision matrix, which leads to the inverse Wishart distribu-
tion, although we shall not discuss this further. If both the mean and the precision
are unknown, then, following a similar line of reasoning to the univariate case, the
conjugate prior is given by

p(µ,Λ|µ0, β,W, ν) = N (µ|µ0, (βΛ)−1)W(Λ|W, ν) (2.157)

which is known as the normal-Wishart or Gaussian-Wishart distribution.

2.3.7 Student’s t-distribution
We have seen that the conjugate prior for the precision of a Gaussian is given

by a gamma distribution. If we have a univariate Gaussian N (x|µ, τ−1) togetherSection 2.3.6
with a Gamma prior Gam(τ |a, b) and we integrate out the precision, we obtain the
marginal distribution of x in the formExercise 2.46
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Figure 2.15 Plot of Student’s t-distribution (2.159)
for µ = 0 and λ = 1 for various values
of ν. The limit ν → ∞ corresponds
to a Gaussian distribution with mean
µ and precision λ.
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p(x|µ, a, b) =
∫ ∞

0

N (x|µ, τ−1)Gam(τ |a, b) dτ (2.158)

=
∫ ∞

0

bae(−bτ)τa−1

Γ(a)

( τ

2π

)1/2

exp
{
−τ

2
(x − µ)2

}
dτ

=
ba

Γ(a)

(
1
2π

)1/2 [
b +

(x − µ)2

2

]−a−1/2

Γ(a + 1/2)

where we have made the change of variable z = τ [b + (x − µ)2/2]. By convention
we define new parameters given by ν = 2a and λ = a/b, in terms of which the
distribution p(x|µ, a, b) takes the form

St(x|µ, λ, ν) =
Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

)1/2 [
1 +

λ(x − µ)2

ν

]−ν/2−1/2

(2.159)

which is known as Student’s t-distribution. The parameter λ is sometimes called the
precision of the t-distribution, even though it is not in general equal to the inverse
of the variance. The parameter ν is called the degrees of freedom, and its effect is
illustrated in Figure 2.15. For the particular case of ν = 1, the t-distribution reduces
to the Cauchy distribution, while in the limit ν → ∞ the t-distribution St(x|µ, λ, ν)
becomes a Gaussian N (x|µ, λ−1) with mean µ and precision λ.Exercise 2.47

From (2.158), we see that Student’s t-distribution is obtained by adding up an
infinite number of Gaussian distributions having the same mean but different preci-
sions. This can be interpreted as an infinite mixture of Gaussians (Gaussian mixtures
will be discussed in detail in Section 2.3.9. The result is a distribution that in gen-
eral has longer ‘tails’ than a Gaussian, as was seen in Figure 2.15. This gives the t-
distribution an important property called robustness, which means that it is much less
sensitive than the Gaussian to the presence of a few data points which are outliers.
The robustness of the t-distribution is illustrated in Figure 2.16, which compares the
maximum likelihood solutions for a Gaussian and a t-distribution. Note that the max-
imum likelihood solution for the t-distribution can be found using the expectation-
maximization (EM) algorithm. Here we see that the effect of a small number ofExercise 12.24
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Figure 2.16 Illustration of the robustness of Student’s t-distribution compared to a Gaussian. (a) Histogram
distribution of 30 data points drawn from a Gaussian distribution, together with the maximum likelihood fit ob-
tained from a t-distribution (red curve) and a Gaussian (green curve, largely hidden by the red curve). Because
the t-distribution contains the Gaussian as a special case it gives almost the same solution as the Gaussian.
(b) The same data set but with three additional outlying data points showing how the Gaussian (green curve) is
strongly distorted by the outliers, whereas the t-distribution (red curve) is relatively unaffected.

outliers is much less significant for the t-distribution than for the Gaussian. Outliers
can arise in practical applications either because the process that generates the data
corresponds to a distribution having a heavy tail or simply through mislabelled data.
Robustness is also an important property for regression problems. Unsurprisingly,
the least squares approach to regression does not exhibit robustness, because it cor-
responds to maximum likelihood under a (conditional) Gaussian distribution. By
basing a regression model on a heavy-tailed distribution such as a t-distribution, we
obtain a more robust model.

If we go back to (2.158) and substitute the alternative parameters ν = 2a, λ =
a/b, and η = τb/a, we see that the t-distribution can be written in the form

St(x|µ, λ, ν) =
∫ ∞

0

N (
x|µ, (ηλ)−1

)
Gam(η|ν/2, ν/2) dη. (2.160)

We can then generalize this to a multivariate Gaussian N (x|µ,Λ) to obtain the cor-
responding multivariate Student’s t-distribution in the form

St(x|µ,Λ, ν) =
∫ ∞

0

N (x|µ, (ηΛ)−1)Gam(η|ν/2, ν/2) dη. (2.161)

Using the same technique as for the univariate case, we can evaluate this integral to
giveExercise 2.48
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St(x|µ,Λ, ν) =
Γ(D/2 + ν/2)

Γ(ν/2)
|Λ|1/2

(πν)D/2

[
1 +

∆2

ν

]−D/2−ν/2

(2.162)

where D is the dimensionality of x, and ∆2 is the squared Mahalanobis distance
defined by

∆2 = (x − µ)TΛ(x − µ). (2.163)

This is the multivariate form of Student’s t-distribution and satisfies the following
propertiesExercise 2.49

E[x] = µ, if ν > 1 (2.164)

cov[x] =
ν

(ν − 2)
Λ−1, if ν > 2 (2.165)

mode[x] = µ (2.166)

with corresponding results for the univariate case.

2.3.8 Periodic variables
Although Gaussian distributions are of great practical significance, both in their

own right and as building blocks for more complex probabilistic models, there are
situations in which they are inappropriate as density models for continuous vari-
ables. One important case, which arises in practical applications, is that of periodic
variables.

An example of a periodic variable would be the wind direction at a particular
geographical location. We might, for instance, measure values of wind direction on a
number of days and wish to summarize this using a parametric distribution. Another
example is calendar time, where we may be interested in modelling quantities that
are believed to be periodic over 24 hours or over an annual cycle. Such quantities
can conveniently be represented using an angular (polar) coordinate 0 � θ < 2π.

We might be tempted to treat periodic variables by choosing some direction
as the origin and then applying a conventional distribution such as the Gaussian.
Such an approach, however, would give results that were strongly dependent on the
arbitrary choice of origin. Suppose, for instance, that we have two observations at
θ1 = 1◦ and θ2 = 359◦, and we model them using a standard univariate Gaussian
distribution. If we choose the origin at 0◦, then the sample mean of this data set
will be 180◦ with standard deviation 179◦, whereas if we choose the origin at 180◦,
then the mean will be 0◦ and the standard deviation will be 1◦. We clearly need to
develop a special approach for the treatment of periodic variables.

Let us consider the problem of evaluating the mean of a set of observations
D = {θ1, . . . , θN} of a periodic variable. From now on, we shall assume that θ is
measured in radians. We have already seen that the simple average (θ1+· · ·+θN )/N
will be strongly coordinate dependent. To find an invariant measure of the mean, we
note that the observations can be viewed as points on the unit circle and can therefore
be described instead by two-dimensional unit vectors x1, . . . ,xN where ‖xn‖ = 1
for n = 1, . . . , N , as illustrated in Figure 2.17. We can average the vectors {xn}
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Figure 2.17 Illustration of the representation of val-
ues θn of a periodic variable as two-
dimensional vectors xn living on the unit
circle. Also shown is the average x of
those vectors.
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instead to give

x =
1
N

N∑
n=1

xn (2.167)

and then find the corresponding angle θ of this average. Clearly, this definition will
ensure that the location of the mean is independent of the origin of the angular coor-
dinate. Note that x will typically lie inside the unit circle. The Cartesian coordinates
of the observations are given by xn = (cos θn, sin θn), and we can write the Carte-
sian coordinates of the sample mean in the form x = (r cos θ, r sin θ). Substituting
into (2.167) and equating the x1 and x2 components then gives

r cos θ =
1
N

N∑
n=1

cos θn, r sin θ =
1
N

N∑
n=1

sin θn. (2.168)

Taking the ratio, and using the identity tan θ = sin θ/ cos θ, we can solve for θ to
give

θ = tan−1

{∑
n sin θn∑
n cos θn

}
. (2.169)

Shortly, we shall see how this result arises naturally as the maximum likelihood
estimator for an appropriately defined distribution over a periodic variable.

We now consider a periodic generalization of the Gaussian called the von Mises
distribution. Here we shall limit our attention to univariate distributions, although
periodic distributions can also be found over hyperspheres of arbitrary dimension.
For an extensive discussion of periodic distributions, see Mardia and Jupp (2000).

By convention, we will consider distributions p(θ) that have period 2π. Any
probability density p(θ) defined over θ must not only be nonnegative and integrate
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Figure 2.18 The von Mises distribution can be derived by considering
a two-dimensional Gaussian of the form (2.173), whose
density contours are shown in blue and conditioning on
the unit circle shown in red.
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to one, but it must also be periodic. Thus p(θ) must satisfy the three conditions

p(θ) � 0 (2.170)∫ 2π

0

p(θ) dθ = 1 (2.171)

p(θ + 2π) = p(θ). (2.172)

From (2.172), it follows that p(θ + M2π) = p(θ) for any integer M .
We can easily obtain a Gaussian-like distribution that satisfies these three prop-

erties as follows. Consider a Gaussian distribution over two variables x = (x1, x2)
having mean µ = (µ1, µ2) and a covariance matrix Σ = σ2I where I is the 2 × 2
identity matrix, so that

p(x1, x2) =
1

2πσ2
exp

{
−(x1 − µ1)2 + (x2 − µ2)2

2σ2

}
. (2.173)

The contours of constant p(x) are circles, as illustrated in Figure 2.18. Now suppose
we consider the value of this distribution along a circle of fixed radius. Then by con-
struction this distribution will be periodic, although it will not be normalized. We can
determine the form of this distribution by transforming from Cartesian coordinates
(x1, x2) to polar coordinates (r, θ) so that

x1 = r cos θ, x2 = r sin θ. (2.174)

We also map the mean µ into polar coordinates by writing

µ1 = r0 cos θ0, µ2 = r0 sin θ0. (2.175)

Next we substitute these transformations into the two-dimensional Gaussian distribu-
tion (2.173), and then condition on the unit circle r = 1, noting that we are interested
only in the dependence on θ. Focussing on the exponent in the Gaussian distribution
we have

− 1
2σ2

{
(r cos θ − r0 cos θ0)2 + (r sin θ − r0 sin θ0)2

}
= − 1

2σ2

{
1 + r2

0 − 2r0 cos θ cos θ0 − 2r0 sin θ sin θ0

}
=

r0

σ2
cos(θ − θ0) + const (2.176)
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m = 1, θ0 = 3π/4
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Figure 2.19 The von Mises distribution plotted for two different parameter values, shown as a Cartesian plot
on the left and as the corresponding polar plot on the right.

where ‘const’ denotes terms independent of θ, and we have made use of the following
trigonometrical identitiesExercise 2.51

cos2 A + sin2 A = 1 (2.177)

cos A cos B + sinA sin B = cos(A − B). (2.178)

If we now define m = r0/σ2, we obtain our final expression for the distribution of
p(θ) along the unit circle r = 1 in the form

p(θ|θ0, m) =
1

2πI0(m)
exp {m cos(θ − θ0)} (2.179)

which is called the von Mises distribution, or the circular normal. Here the param-
eter θ0 corresponds to the mean of the distribution, while m, which is known as
the concentration parameter, is analogous to the inverse variance (precision) for the
Gaussian. The normalization coefficient in (2.179) is expressed in terms of I0(m),
which is the zeroth-order Bessel function of the first kind (Abramowitz and Stegun,
1965) and is defined by

I0(m) =
1
2π

∫ 2π

0

exp {m cos θ} dθ. (2.180)

For large m, the distribution becomes approximately Gaussian. The von Mises dis-Exercise 2.52
tribution is plotted in Figure 2.19, and the function I0(m) is plotted in Figure 2.20.

Now consider the maximum likelihood estimators for the parameters θ0 and m
for the von Mises distribution. The log likelihood function is given by

ln p(D|θ0, m) = −N ln(2π) − N ln I0(m) + m

N∑
n=1

cos(θn − θ0). (2.181)
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Figure 2.20 Plot of the Bessel function I0(m) defined by (2.180), together with the function A(m) defined by
(2.186).

Setting the derivative with respect to θ0 equal to zero gives

N∑
n=1

sin(θn − θ0) = 0. (2.182)

To solve for θ0, we make use of the trigonometric identity

sin(A − B) = cos B sin A − cos A sin B (2.183)

from which we obtainExercise 2.53

θML
0 = tan−1

{∑
n sin θn∑
n cos θn

}
(2.184)

which we recognize as the result (2.169) obtained earlier for the mean of the obser-
vations viewed in a two-dimensional Cartesian space.

Similarly, maximizing (2.181) with respect to m, and making use of I ′0(m) =
I1(m) (Abramowitz and Stegun, 1965), we have

A(m) =
1
N

N∑
n=1

cos(θn − θML
0 ) (2.185)

where we have substituted for the maximum likelihood solution for θML
0 (recalling

that we are performing a joint optimization over θ and m), and we have defined

A(m) =
I1(m)
I0(m)

. (2.186)

The function A(m) is plotted in Figure 2.20. Making use of the trigonometric iden-
tity (2.178), we can write (2.185) in the form

A(mML) =

(
1
N

N∑
n=1

cos θn

)
cos θML

0 −
(

1
N

N∑
n=1

sin θn

)
sin θML

0 . (2.187)
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Figure 2.21 Plots of the ‘old faith-
ful’ data in which the blue curves
show contours of constant proba-
bility density. On the left is a
single Gaussian distribution which
has been fitted to the data us-
ing maximum likelihood. Note that
this distribution fails to capture the
two clumps in the data and indeed
places much of its probability mass
in the central region between the
clumps where the data are relatively
sparse. On the right the distribution
is given by a linear combination of
two Gaussians which has been fitted
to the data by maximum likelihood
using techniques discussed Chap-
ter 9, and which gives a better rep-
resentation of the data.
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The right-hand side of (2.187) is easily evaluated, and the function A(m) can be
inverted numerically.

For completeness, we mention briefly some alternative techniques for the con-
struction of periodic distributions. The simplest approach is to use a histogram of
observations in which the angular coordinate is divided into fixed bins. This has the
virtue of simplicity and flexibility but also suffers from significant limitations, as we
shall see when we discuss histogram methods in more detail in Section 2.5. Another
approach starts, like the von Mises distribution, from a Gaussian distribution over a
Euclidean space but now marginalizes onto the unit circle rather than conditioning
(Mardia and Jupp, 2000). However, this leads to more complex forms of distribution
and will not be discussed further. Finally, any valid distribution over the real axis
(such as a Gaussian) can be turned into a periodic distribution by mapping succes-
sive intervals of width 2π onto the periodic variable (0, 2π), which corresponds to
‘wrapping’ the real axis around unit circle. Again, the resulting distribution is more
complex to handle than the von Mises distribution.

One limitation of the von Mises distribution is that it is unimodal. By forming
mixtures of von Mises distributions, we obtain a flexible framework for modelling
periodic variables that can handle multimodality. For an example of a machine learn-
ing application that makes use of von Mises distributions, see Lawrence et al. (2002),
and for extensions to modelling conditional densities for regression problems, see
Bishop and Nabney (1996).

2.3.9 Mixtures of Gaussians
While the Gaussian distribution has some important analytical properties, it suf-

fers from significant limitations when it comes to modelling real data sets. Consider
the example shown in Figure 2.21. This is known as the ‘Old Faithful’ data set,
and comprises 272 measurements of the eruption of the Old Faithful geyser at Yel-
lowstone National Park in the USA. Each measurement comprises the duration ofAppendix A
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Figure 2.22 Example of a Gaussian mixture distribution
in one dimension showing three Gaussians
(each scaled by a coefficient) in blue and
their sum in red.

x

p(x)

the eruption in minutes (horizontal axis) and the time in minutes to the next erup-
tion (vertical axis). We see that the data set forms two dominant clumps, and that
a simple Gaussian distribution is unable to capture this structure, whereas a linear
superposition of two Gaussians gives a better characterization of the data set.

Such superpositions, formed by taking linear combinations of more basic dis-
tributions such as Gaussians, can be formulated as probabilistic models known as
mixture distributions (McLachlan and Basford, 1988; McLachlan and Peel, 2000).
In Figure 2.22 we see that a linear combination of Gaussians can give rise to very
complex densities. By using a sufficient number of Gaussians, and by adjusting their
means and covariances as well as the coefficients in the linear combination, almost
any continuous density can be approximated to arbitrary accuracy.

We therefore consider a superposition of K Gaussian densities of the form

p(x) =
K∑

k=1

πkN (x|µk,Σk) (2.188)

which is called a mixture of Gaussians. Each Gaussian density N (x|µk,Σk) is
called a component of the mixture and has its own mean µk and covariance Σk.
Contour and surface plots for a Gaussian mixture having 3 components are shown in
Figure 2.23.

In this section we shall consider Gaussian components to illustrate the frame-
work of mixture models. More generally, mixture models can comprise linear com-
binations of other distributions. For instance, in Section 9.3.3 we shall consider
mixtures of Bernoulli distributions as an example of a mixture model for discrete
variables.Section 9.3.3

The parameters πk in (2.188) are called mixing coefficients. If we integrate both
sides of (2.188) with respect to x, and note that both p(x) and the individual Gaussian
components are normalized, we obtain

K∑
k=1

πk = 1. (2.189)

Also, the requirement that p(x) � 0, together with N (x|µk,Σk) � 0, implies
πk � 0 for all k. Combining this with the condition (2.189) we obtain

0 � πk � 1. (2.190)
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Figure 2.23 Illustration of a mixture of 3 Gaussians in a two-dimensional space. (a) Contours of constant
density for each of the mixture components, in which the 3 components are denoted red, blue and green, and
the values of the mixing coefficients are shown below each component. (b) Contours of the marginal probability
density p(x) of the mixture distribution. (c) A surface plot of the distribution p(x).

We therefore see that the mixing coefficients satisfy the requirements to be probabil-
ities.

From the sum and product rules, the marginal density is given by

p(x) =
K∑

k=1

p(k)p(x|k) (2.191)

which is equivalent to (2.188) in which we can view πk = p(k) as the prior prob-
ability of picking the kth component, and the density N (x|µk,Σk) = p(x|k) as
the probability of x conditioned on k. As we shall see in later chapters, an impor-
tant role is played by the posterior probabilities p(k|x), which are also known as
responsibilities. From Bayes’ theorem these are given by

γk(x) ≡ p(k|x)

=
p(k)p(x|k)∑

l p(l)p(x|l)
=

πkN (x|µk,Σk)∑
l πlN (x|µl,Σl)

. (2.192)

We shall discuss the probabilistic interpretation of the mixture distribution in greater
detail in Chapter 9.

The form of the Gaussian mixture distribution is governed by the parameters π,
µ and Σ, where we have used the notation π ≡ {π1, . . . , πK}, µ ≡ {µ1, . . . ,µK}
and Σ ≡ {Σ1, . . .ΣK}. One way to set the values of these parameters is to use
maximum likelihood. From (2.188) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
(2.193)
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where X = {x1, . . . ,xN}. We immediately see that the situation is now much
more complex than with a single Gaussian, due to the presence of the summation
over k inside the logarithm. As a result, the maximum likelihood solution for the
parameters no longer has a closed-form analytical solution. One approach to maxi-
mizing the likelihood function is to use iterative numerical optimization techniques
(Fletcher, 1987; Nocedal and Wright, 1999; Bishop and Nabney, 2008). Alterna-
tively we can employ a powerful framework called expectation maximization, which
will be discussed at length in Chapter 9.

2.4. The Exponential Family

The probability distributions that we have studied so far in this chapter (with the
exception of the Gaussian mixture) are specific examples of a broad class of distri-
butions called the exponential family (Duda and Hart, 1973; Bernardo and Smith,
1994). Members of the exponential family have many important properties in com-
mon, and it is illuminating to discuss these properties in some generality.

The exponential family of distributions over x, given parameters η, is defined to
be the set of distributions of the form

p(x|η) = h(x)g(η) exp
{
ηTu(x)

}
(2.194)

where x may be scalar or vector, and may be discrete or continuous. Here η are
called the natural parameters of the distribution, and u(x) is some function of x.
The function g(η) can be interpreted as the coefficient that ensures that the distribu-
tion is normalized and therefore satisfies

g(η)
∫

h(x) exp
{
ηTu(x)

}
dx = 1 (2.195)

where the integration is replaced by summation if x is a discrete variable.
We begin by taking some examples of the distributions introduced earlier in

the chapter and showing that they are indeed members of the exponential family.
Consider first the Bernoulli distribution

p(x|µ) = Bern(x|µ) = µx(1 − µ)1−x. (2.196)

Expressing the right-hand side as the exponential of the logarithm, we have

p(x|µ) = exp {x lnµ + (1 − x) ln(1 − µ)}
= (1 − µ) exp

{
ln
(

µ

1 − µ

)
x

}
. (2.197)

Comparison with (2.194) allows us to identify

η = ln
(

µ

1 − µ

)
(2.198)
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which we can solve for µ to give µ = σ(η), where

σ(η) =
1

1 + exp(−η)
(2.199)

is called the logistic sigmoid function. Thus we can write the Bernoulli distribution
using the standard representation (2.194) in the form

p(x|η) = σ(−η) exp(ηx) (2.200)

where we have used 1 − σ(η) = σ(−η), which is easily proved from (2.199). Com-
parison with (2.194) shows that

u(x) = x (2.201)

h(x) = 1 (2.202)

g(η) = σ(−η). (2.203)

Next consider the multinomial distribution that, for a single observation x, takes
the form

p(x|µ) =
M∏

k=1

µxk

k = exp

{
M∑

k=1

xk ln µk

}
(2.204)

where x = (x1, . . . , xN )T. Again, we can write this in the standard representation
(2.194) so that

p(x|η) = exp(ηTx) (2.205)

where ηk = lnµk, and we have defined η = (η1, . . . , ηM )T. Again, comparing with
(2.194) we have

u(x) = x (2.206)

h(x) = 1 (2.207)

g(η) = 1. (2.208)

Note that the parameters ηk are not independent because the parameters µk are sub-
ject to the constraint

M∑
k=1

µk = 1 (2.209)

so that, given any M − 1 of the parameters µk, the value of the remaining parameter
is fixed. In some circumstances, it will be convenient to remove this constraint by
expressing the distribution in terms of only M − 1 parameters. This can be achieved
by using the relationship (2.209) to eliminate µM by expressing it in terms of the
remaining {µk} where k = 1, . . . , M − 1, thereby leaving M − 1 parameters. Note
that these remaining parameters are still subject to the constraints

0 � µk � 1,

M−1∑
k=1

µk � 1. (2.210)
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Making use of the constraint (2.209), the multinomial distribution in this representa-
tion then becomes

exp

{
M∑

k=1

xk ln µk

}

= exp

{
M−1∑
k=1

xk lnµk +

(
1 −

M−1∑
k=1

xk

)
ln

(
1 −

M−1∑
k=1

µk

)}

= exp

{
M−1∑
k=1

xk ln

(
µk

1 −∑M−1

j=1 µj

)
+ ln

(
1 −

M−1∑
k=1

µk

)}
. (2.211)

We now identify

ln

(
µk

1 −∑
j µj

)
= ηk (2.212)

which we can solve for µk by first summing both sides over k and then rearranging
and back-substituting to give

µk =
exp(ηk)

1 +
∑

j exp(ηj)
. (2.213)

This is called the softmax function, or the normalized exponential. In this represen-
tation, the multinomial distribution therefore takes the form

p(x|η) =

(
1 +

M−1∑
k=1

exp(ηk)

)−1

exp(ηTx). (2.214)

This is the standard form of the exponential family, with parameter vector η =
(η1, . . . , ηM−1)T in which

u(x) = x (2.215)

h(x) = 1 (2.216)

g(η) =

(
1 +

M−1∑
k=1

exp(ηk)

)−1

. (2.217)

Finally, let us consider the Gaussian distribution. For the univariate Gaussian,
we have

p(x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(2.218)

=
1

(2πσ2)1/2
exp

{
− 1

2σ2
x2 +

µ

σ2
x − 1

2σ2
µ2

}
(2.219)
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which, after some simple rearrangement, can be cast in the standard exponential
family form (2.194) withExercise 2.57

η =
(

µ/σ2

−1/2σ2

)
(2.220)

u(x) =
(

x
x2

)
(2.221)

h(x) = (2π)−1/2 (2.222)

g(η) = (−2η2)1/2 exp
(

η2
1

4η2

)
. (2.223)

2.4.1 Maximum likelihood and sufficient statistics
Let us now consider the problem of estimating the parameter vector η in the gen-

eral exponential family distribution (2.194) using the technique of maximum likeli-
hood. Taking the gradient of both sides of (2.195) with respect to η, we have

∇g(η)
∫

h(x) exp
{
ηTu(x)

}
dx

+ g(η)
∫

h(x) exp
{
ηTu(x)

}
u(x) dx = 0. (2.224)

Rearranging, and making use again of (2.195) then gives

− 1
g(η)

∇g(η) = g(η)
∫

h(x) exp
{
ηTu(x)

}
u(x) dx = E[u(x)] (2.225)

where we have used (2.194). We therefore obtain the result

−∇ ln g(η) = E[u(x)]. (2.226)

Note that the covariance of u(x) can be expressed in terms of the second derivatives
of g(η), and similarly for higher order moments. Thus, provided we can normalize aExercise 2.58
distribution from the exponential family, we can always find its moments by simple
differentiation.

Now consider a set of independent identically distributed data denoted by X =
{x1, . . . ,xn}, for which the likelihood function is given by

p(X|η) =

(
N∏

n=1

h(xn)

)
g(η)N exp

{
ηT

N∑
n=1

u(xn)

}
. (2.227)

Setting the gradient of ln p(X|η) with respect to η to zero, we get the following
condition to be satisfied by the maximum likelihood estimator ηML

−∇ ln g(ηML) =
1
N

N∑
n=1

u(xn) (2.228)
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which can in principle be solved to obtain ηML. We see that the solution for the
maximum likelihood estimator depends on the data only through

∑
n u(xn), which

is therefore called the sufficient statistic of the distribution (2.194). We do not need
to store the entire data set itself but only the value of the sufficient statistic. For
the Bernoulli distribution, for example, the function u(x) is given just by x and
so we need only keep the sum of the data points {xn}, whereas for the Gaussian
u(x) = (x, x2)T, and so we should keep both the sum of {xn} and the sum of {x2

n}.
If we consider the limit N → ∞, then the right-hand side of (2.228) becomes

E[u(x)], and so by comparing with (2.226) we see that in this limit ηML will equal
the true value η.

In fact, this sufficiency property holds also for Bayesian inference, although
we shall defer discussion of this until Chapter 8 when we have equipped ourselves
with the tools of graphical models and can thereby gain a deeper insight into these
important concepts.

2.4.2 Conjugate priors
We have already encountered the concept of a conjugate prior several times, for

example in the context of the Bernoulli distribution (for which the conjugate prior
is the beta distribution) or the Gaussian (where the conjugate prior for the mean is
a Gaussian, and the conjugate prior for the precision is the Wishart distribution). In
general, for a given probability distribution p(x|η), we can seek a prior p(η) that is
conjugate to the likelihood function, so that the posterior distribution has the same
functional form as the prior. For any member of the exponential family (2.194), there
exists a conjugate prior that can be written in the form

p(η|χ, ν) = f(χ, ν)g(η)ν exp
{
νηTχ

}
(2.229)

where f(χ, ν) is a normalization coefficient, and g(η) is the same function as ap-
pears in (2.194). To see that this is indeed conjugate, let us multiply the prior (2.229)
by the likelihood function (2.227) to obtain the posterior distribution, up to a nor-
malization coefficient, in the form

p(η|X, χ, ν) ∝ g(η)ν+N exp

{
ηT

(
N∑

n=1

u(xn) + νχ

)}
. (2.230)

This again takes the same functional form as the prior (2.229), confirming conjugacy.
Furthermore, we see that the parameter ν can be interpreted as a effective number of
pseudo-observations in the prior, each of which has a value for the sufficient statistic
u(x) given by χ.

2.4.3 Noninformative priors
In some applications of probabilistic inference, we may have prior knowledge

that can be conveniently expressed through the prior distribution. For example, if
the prior assigns zero probability to some value of variable, then the posterior dis-
tribution will necessarily also assign zero probability to that value, irrespective of
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any subsequent observations of data. In many cases, however, we may have little
idea of what form the distribution should take. We may then seek a form of prior
distribution, called a noninformative prior, which is intended to have as little influ-
ence on the posterior distribution as possible (Jeffries, 1946; Box and Tao, 1973;
Bernardo and Smith, 1994). This is sometimes referred to as ‘letting the data speak
for themselves’.

If we have a distribution p(x|λ) governed by a parameter λ, we might be tempted
to propose a prior distribution p(λ) = const as a suitable prior. If λ is a discrete
variable with K states, this simply amounts to setting the prior probability of each
state to 1/K. In the case of continuous parameters, however, there are two potential
difficulties with this approach. The first is that, if the domain of λ is unbounded,
this prior distribution cannot be correctly normalized because the integral over λ
diverges. Such priors are called improper. In practice, improper priors can often
be used provided the corresponding posterior distribution is proper, i.e., that it can
be correctly normalized. For instance, if we put a uniform prior distribution over
the mean of a Gaussian, then the posterior distribution for the mean, once we have
observed at least one data point, will be proper.

A second difficulty arises from the transformation behaviour of a probability
density under a nonlinear change of variables, given by (1.27). If a function h(λ)
is constant, and we change variables to λ = η2, then ĥ(η) = h(η2) will also be
constant. However, if we choose the density pλ(λ) to be constant, then the density
of η will be given, from (1.27), by

pη(η) = pλ(λ)
∣∣∣∣ dλ

dη

∣∣∣∣ = pλ(η2)2η ∝ η (2.231)

and so the density over η will not be constant. This issue does not arise when we use
maximum likelihood, because the likelihood function p(x|λ) is a simple function of
λ and so we are free to use any convenient parameterization. If, however, we are to
choose a prior distribution that is constant, we must take care to use an appropriate
representation for the parameters.

Here we consider two simple examples of noninformative priors (Berger, 1985).
First of all, if a density takes the form

p(x|µ) = f(x − µ) (2.232)

then the parameter µ is known as a location parameter. This family of densities
exhibits translation invariance because if we shift x by a constant to give x̂ = x+ c,
then

p(x̂|µ̂) = f(x̂ − µ̂) (2.233)

where we have defined µ̂ = µ + c. Thus the density takes the same form in the
new variable as in the original one, and so the density is independent of the choice
of origin. We would like to choose a prior distribution that reflects this translation
invariance property, and so we choose a prior that assigns equal probability mass to
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an interval A � µ � B as to the shifted interval A − c � µ � B − c. This implies∫ B

A

p(µ) dµ =
∫ B−c

A−c

p(µ) dµ =
∫ B

A

p(µ − c) dµ (2.234)

and because this must hold for all choices of A and B, we have

p(µ − c) = p(µ) (2.235)

which implies that p(µ) is constant. An example of a location parameter would be
the mean µ of a Gaussian distribution. As we have seen, the conjugate prior distri-
bution for µ in this case is a Gaussian p(µ|µ0, σ

2
0) = N (µ|µ0, σ

2
0), and we obtain a

noninformative prior by taking the limit σ2
0 → ∞. Indeed, from (2.141) and (2.142)

we see that this gives a posterior distribution over µ in which the contributions from
the prior vanish.

As a second example, consider a density of the form

p(x|σ) =
1
σ

f
(x

σ

)
(2.236)

where σ > 0. Note that this will be a normalized density provided f(x) is correctly
normalized. The parameter σ is known as a scale parameter, and the density exhibitsExercise 2.59
scale invariance because if we scale x by a constant to give x̂ = cx, then

p(x̂|σ̂) =
1
σ̂

f

(
x̂

σ̂

)
(2.237)

where we have defined σ̂ = cσ. This transformation corresponds to a change of
scale, for example from meters to kilometers if x is a length, and we would like
to choose a prior distribution that reflects this scale invariance. If we consider an
interval A � σ � B, and a scaled interval A/c � σ � B/c, then the prior should
assign equal probability mass to these two intervals. Thus we have∫ B

A

p(σ) dσ =
∫ B/c

A/c

p(σ) dσ =
∫ B

A

p

(
1
c
σ

)
1
c

dσ (2.238)

and because this must hold for choices of A and B, we have

p(σ) = p

(
1
c
σ

)
1
c

(2.239)

and hence p(σ) ∝ 1/σ. Note that again this is an improper prior because the integral
of the distribution over 0 � σ � ∞ is divergent. It is sometimes also convenient
to think of the prior distribution for a scale parameter in terms of the density of the
log of the parameter. Using the transformation rule (1.27) for densities we see that
p(lnσ) = const. Thus, for this prior there is the same probability mass in the range
1 � σ � 10 as in the range 10 � σ � 100 and in 100 � σ � 1000.
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An example of a scale parameter would be the standard deviation σ of a Gaussian
distribution, after we have taken account of the location parameter µ, because

N (x|µ, σ2) ∝ σ−1 exp
{−(x̃/σ)2

}
(2.240)

where x̃ = x − µ. As discussed earlier, it is often more convenient to work in terms
of the precision λ = 1/σ2 rather than σ itself. Using the transformation rule for
densities, we see that a distribution p(σ) ∝ 1/σ corresponds to a distribution over λ
of the form p(λ) ∝ 1/λ. We have seen that the conjugate prior for λ was the gamma
distribution Gam(λ|a0, b0) given by (2.146). The noninformative prior is obtainedSection 2.3
as the special case a0 = b0 = 0. Again, if we examine the results (2.150) and (2.151)
for the posterior distribution of λ, we see that for a0 = b0 = 0, the posterior depends
only on terms arising from the data and not from the prior.

2.5. Nonparametric Methods

Throughout this chapter, we have focussed on the use of probability distributions
having specific functional forms governed by a small number of parameters whose
values are to be determined from a data set. This is called the parametric approach
to density modelling. An important limitation of this approach is that the chosen
density might be a poor model of the distribution that generates the data, which can
result in poor predictive performance. For instance, if the process that generates the
data is multimodal, then this aspect of the distribution can never be captured by a
Gaussian, which is necessarily unimodal.

In this final section, we consider some nonparametric approaches to density es-
timation that make few assumptions about the form of the distribution. Here we shall
focus mainly on simple frequentist methods. The reader should be aware, however,
that nonparametric Bayesian methods are attracting increasing interest (Walker et al.,
1999; Neal, 2000; Müller and Quintana, 2004; Teh et al., 2006).

Let us start with a discussion of histogram methods for density estimation, which
we have already encountered in the context of marginal and conditional distributions
in Figure 1.11 and in the context of the central limit theorem in Figure 2.6. Here we
explore the properties of histogram density models in more detail, focussing on the
case of a single continuous variable x. Standard histograms simply partition x into
distinct bins of width ∆i and then count the number ni of observations of x falling
in bin i. In order to turn this count into a normalized probability density, we simply
divide by the total number N of observations and by the width ∆i of the bins to
obtain probability values for each bin given by

pi =
ni

N∆i
(2.241)

for which it is easily seen that
∫

p(x) dx = 1. This gives a model for the density
p(x) that is constant over the width of each bin, and often the bins are chosen to have
the same width ∆i = ∆.
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Figure 2.24 An illustration of the histogram approach
to density estimation, in which a data set
of 50 data points is generated from the
distribution shown by the green curve.
Histogram density estimates, based on
(2.241), with a common bin width ∆ are
shown for various values of ∆.
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In Figure 2.24, we show an example of histogram density estimation. Here
the data is drawn from the distribution, corresponding to the green curve, which is
formed from a mixture of two Gaussians. Also shown are three examples of his-
togram density estimates corresponding to three different choices for the bin width
∆. We see that when ∆ is very small (top figure), the resulting density model is very
spiky, with a lot of structure that is not present in the underlying distribution that
generated the data set. Conversely, if ∆ is too large (bottom figure) then the result is
a model that is too smooth and that consequently fails to capture the bimodal prop-
erty of the green curve. The best results are obtained for some intermediate value
of ∆ (middle figure). In principle, a histogram density model is also dependent on
the choice of edge location for the bins, though this is typically much less significant
than the value of ∆.

Note that the histogram method has the property (unlike the methods to be dis-
cussed shortly) that, once the histogram has been computed, the data set itself can
be discarded, which can be advantageous if the data set is large. Also, the histogram
approach is easily applied if the data points are arriving sequentially.

In practice, the histogram technique can be useful for obtaining a quick visual-
ization of data in one or two dimensions but is unsuited to most density estimation
applications. One obvious problem is that the estimated density has discontinuities
that are due to the bin edges rather than any property of the underlying distribution
that generated the data. Another major limitation of the histogram approach is its
scaling with dimensionality. If we divide each variable in a D-dimensional space
into M bins, then the total number of bins will be MD. This exponential scaling
with D is an example of the curse of dimensionality. In a space of high dimensional-Section 1.4
ity, the quantity of data needed to provide meaningful estimates of local probability
density would be prohibitive.

The histogram approach to density estimation does, however, teach us two im-
portant lessons. First, to estimate the probability density at a particular location,
we should consider the data points that lie within some local neighbourhood of that
point. Note that the concept of locality requires that we assume some form of dis-
tance measure, and here we have been assuming Euclidean distance. For histograms,
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this neighbourhood property was defined by the bins, and there is a natural ‘smooth-
ing’ parameter describing the spatial extent of the local region, in this case the bin
width. Second, the value of the smoothing parameter should be neither too large nor
too small in order to obtain good results. This is reminiscent of the choice of model
complexity in polynomial curve fitting discussed in Chapter 1 where the degree M
of the polynomial, or alternatively the value α of the regularization parameter, was
optimal for some intermediate value, neither too large nor too small. Armed with
these insights, we turn now to a discussion of two widely used nonparametric tech-
niques for density estimation, kernel estimators and nearest neighbours, which have
better scaling with dimensionality than the simple histogram model.

2.5.1 Kernel density estimators
Let us suppose that observations are being drawn from some unknown probabil-

ity density p(x) in some D-dimensional space, which we shall take to be Euclidean,
and we wish to estimate the value of p(x). From our earlier discussion of locality,
let us consider some small region R containing x. The probability mass associated
with this region is given by

P =
∫
R

p(x) dx. (2.242)

Now suppose that we have collected a data set comprising N observations drawn
from p(x). Because each data point has a probability P of falling within R, the total
number K of points that lie inside R will be distributed according to the binomial
distributionSection 2.1

Bin(K|N, P ) =
N !

K!(N − K)!
PK(1 − P )1−K . (2.243)

Using (2.11), we see that the mean fraction of points falling inside the region is
E[K/N ] = P , and similarly using (2.12) we see that the variance around this mean
is var[K/N ] = P (1 − P )/N . For large N , this distribution will be sharply peaked
around the mean and so

K � NP. (2.244)

If, however, we also assume that the region R is sufficiently small that the probability
density p(x) is roughly constant over the region, then we have

P � p(x)V (2.245)

where V is the volume of R. Combining (2.244) and (2.245), we obtain our density
estimate in the form

p(x) =
K

NV
. (2.246)

Note that the validity of (2.246) depends on two contradictory assumptions, namely
that the region R be sufficiently small that the density is approximately constant over
the region and yet sufficiently large (in relation to the value of that density) that the
number K of points falling inside the region is sufficient for the binomial distribution
to be sharply peaked.
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We can exploit the result (2.246) in two different ways. Either we can fix K and
determine the value of V from the data, which gives rise to the K-nearest-neighbour
technique discussed shortly, or we can fix V and determine K from the data, giv-
ing rise to the kernel approach. It can be shown that both the K-nearest-neighbour
density estimator and the kernel density estimator converge to the true probability
density in the limit N → ∞ provided V shrinks suitably with N , and K grows with
N (Duda and Hart, 1973).

We begin by discussing the kernel method in detail, and to start with we take
the region R to be a small hypercube centred on the point x at which we wish to
determine the probability density. In order to count the number K of points falling
within this region, it is convenient to define the following function

k(u) =
{

1, |ui| � 1/2, i = 1, . . . , D,
0, otherwise (2.247)

which represents a unit cube centred on the origin. The function k(u) is an example
of a kernel function, and in this context is also called a Parzen window. From (2.247),
the quantity k((x−xn)/h) will be one if the data point xn lies inside a cube of side
h centred on x, and zero otherwise. The total number of data points lying inside this
cube will therefore be

K =
N∑

n=1

k
(x − xn

h

)
. (2.248)

Substituting this expression into (2.246) then gives the following result for the esti-
mated density at x

p(x) =
1
N

N∑
n=1

1
hD

k
(x − xn

h

)
(2.249)

where we have used V = hD for the volume of a hypercube of side h in D di-
mensions. Using the symmetry of the function k(u), we can now re-interpret this
equation, not as a single cube centred on x but as the sum over N cubes centred on
the N data points xn.

As it stands, the kernel density estimator (2.249) will suffer from one of the same
problems that the histogram method suffered from, namely the presence of artificial
discontinuities, in this case at the boundaries of the cubes. We can obtain a smoother
density model if we choose a smoother kernel function, and a common choice is the
Gaussian, which gives rise to the following kernel density model

p(x) =
1
N

N∑
n=1

1
(2πh2)1/2

exp
{
−‖x − xn‖2

2h2

}
(2.250)

where h represents the standard deviation of the Gaussian components. Thus our
density model is obtained by placing a Gaussian over each data point and then adding
up the contributions over the whole data set, and then dividing by N so that the den-
sity is correctly normalized. In Figure 2.25, we apply the model (2.250) to the data
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Figure 2.25 Illustration of the kernel density model
(2.250) applied to the same data set used
to demonstrate the histogram approach in
Figure 2.24. We see that h acts as a
smoothing parameter and that if it is set
too small (top panel), the result is a very
noisy density model, whereas if it is set
too large (bottom panel), then the bimodal
nature of the underlying distribution from
which the data is generated (shown by the
green curve) is washed out. The best den-
sity model is obtained for some intermedi-
ate value of h (middle panel).
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set used earlier to demonstrate the histogram technique. We see that, as expected,
the parameter h plays the role of a smoothing parameter, and there is a trade-off
between sensitivity to noise at small h and over-smoothing at large h. Again, the
optimization of h is a problem in model complexity, analogous to the choice of bin
width in histogram density estimation, or the degree of the polynomial used in curve
fitting.

We can choose any other kernel function k(u) in (2.249) subject to the condi-
tions

k(u) � 0, (2.251)∫
k(u) du = 1 (2.252)

which ensure that the resulting probability distribution is nonnegative everywhere
and integrates to one. The class of density model given by (2.249) is called a kernel
density estimator, or Parzen estimator. It has a great merit that there is no compu-
tation involved in the ‘training’ phase because this simply requires storage of the
training set. However, this is also one of its great weaknesses because the computa-
tional cost of evaluating the density grows linearly with the size of the data set.

2.5.2 Nearest-neighbour methods
One of the difficulties with the kernel approach to density estimation is that the

parameter h governing the kernel width is fixed for all kernels. In regions of high
data density, a large value of h may lead to over-smoothing and a washing out of
structure that might otherwise be extracted from the data. However, reducing h may
lead to noisy estimates elsewhere in data space where the density is smaller. Thus
the optimal choice for h may be dependent on location within the data space. This
issue is addressed by nearest-neighbour methods for density estimation.

We therefore return to our general result (2.246) for local density estimation,
and instead of fixing V and determining the value of K from the data, we consider
a fixed value of K and use the data to find an appropriate value for V . To do this,
we consider a small sphere centred on the point x at which we wish to estimate the
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Figure 2.26 Illustration of K-nearest-neighbour den-
sity estimation using the same data set
as in Figures 2.25 and 2.24. We see
that the parameter K governs the degree
of smoothing, so that a small value of
K leads to a very noisy density model
(top panel), whereas a large value (bot-
tom panel) smoothes out the bimodal na-
ture of the true distribution (shown by the
green curve) from which the data set was
generated.
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density p(x), and we allow the radius of the sphere to grow until it contains precisely
K data points. The estimate of the density p(x) is then given by (2.246) with V set to
the volume of the resulting sphere. This technique is known as K nearest neighbours
and is illustrated in Figure 2.26, for various choices of the parameter K, using the
same data set as used in Figure 2.24 and Figure 2.25. We see that the value of K
now governs the degree of smoothing and that again there is an optimum choice for
K that is neither too large nor too small. Note that the model produced by K nearest
neighbours is not a true density model because the integral over all space diverges.Exercise 2.61

We close this chapter by showing how the K-nearest-neighbour technique for
density estimation can be extended to the problem of classification. To do this, we
apply the K-nearest-neighbour density estimation technique to each class separately
and then make use of Bayes’ theorem. Let us suppose that we have a data set com-
prising Nk points in class Ck with N points in total, so that

∑
k Nk = N . If we

wish to classify a new point x, we draw a sphere centred on x containing precisely
K points irrespective of their class. Suppose this sphere has volume V and contains
Kk points from class Ck. Then (2.246) provides an estimate of the density associated
with each class

p(x|Ck) =
Kk

NkV
. (2.253)

Similarly, the unconditional density is given by

p(x) =
K

NV
(2.254)

while the class priors are given by

p(Ck) =
Nk

N
. (2.255)

We can now combine (2.253), (2.254), and (2.255) using Bayes’ theorem to obtain
the posterior probability of class membership

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
=

Kk

K
. (2.256)
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Figure 2.27 (a) In the K-nearest-
neighbour classifier, a new point,
shown by the black diamond, is clas-
sified according to the majority class
membership of the K closest train-
ing data points, in this case K =
3. (b) In the nearest-neighbour
(K = 1) approach to classification,
the resulting decision boundary is
composed of hyperplanes that form
perpendicular bisectors of pairs of
points from different classes.
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x2

(a)
x1

x2

(b)

If we wish to minimize the probability of misclassification, this is done by assigning
the test point x to the class having the largest posterior probability, corresponding to
the largest value of Kk/K. Thus to classify a new point, we identify the K nearest
points from the training data set and then assign the new point to the class having the
largest number of representatives amongst this set. Ties can be broken at random.
The particular case of K = 1 is called the nearest-neighbour rule, because a test
point is simply assigned to the same class as the nearest point from the training set.
These concepts are illustrated in Figure 2.27.

In Figure 2.28, we show the results of applying the K-nearest-neighbour algo-
rithm to the oil flow data, introduced in Chapter 1, for various values of K. As
expected, we see that K controls the degree of smoothing, so that small K produces
many small regions of each class, whereas large K leads to fewer larger regions.
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Figure 2.28 Plot of 200 data points from the oil data set showing values of x6 plotted against x7, where the
red, green, and blue points correspond to the ‘laminar’, ‘annular’, and ‘homogeneous’ classes, respectively. Also
shown are the classifications of the input space given by the K-nearest-neighbour algorithm for various values
of K.
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An interesting property of the nearest-neighbour (K = 1) classifier is that, in the
limit N → ∞, the error rate is never more than twice the minimum achievable error
rate of an optimal classifier, i.e., one that uses the true class distributions (Cover and
Hart, 1967) .

As discussed so far, both the K-nearest-neighbour method, and the kernel den-
sity estimator, require the entire training data set to be stored, leading to expensive
computation if the data set is large. This effect can be offset, at the expense of some
additional one-off computation, by constructing tree-based search structures to allow
(approximate) near neighbours to be found efficiently without doing an exhaustive
search of the data set. Nevertheless, these nonparametric methods are still severely
limited. On the other hand, we have seen that simple parametric models are very
restricted in terms of the forms of distribution that they can represent. We therefore
need to find density models that are very flexible and yet for which the complexity
of the models can be controlled independently of the size of the training set, and we
shall see in subsequent chapters how to achieve this.

Exercises
2.1 (�) www Verify that the Bernoulli distribution (2.2) satisfies the following prop-

erties

1∑
x=0

p(x|µ) = 1 (2.257)

E[x] = µ (2.258)

var[x] = µ(1 − µ). (2.259)

Show that the entropy H[x] of a Bernoulli distributed random binary variable x is
given by

H[x] = −µ ln µ − (1 − µ) ln(1 − µ). (2.260)

2.2 (� �) The form of the Bernoulli distribution given by (2.2) is not symmetric be-
tween the two values of x. In some situations, it will be more convenient to use an
equivalent formulation for which x ∈ {−1, 1}, in which case the distribution can be
written

p(x|µ) =
(

1 − µ

2

)(1−x)/2(1 + µ

2

)(1+x)/2

(2.261)

where µ ∈ [−1, 1]. Show that the distribution (2.261) is normalized, and evaluate its
mean, variance, and entropy.

2.3 (� �) www In this exercise, we prove that the binomial distribution (2.9) is nor-
malized. First use the definition (2.10) of the number of combinations of m identical
objects chosen from a total of N to show that(

N

m

)
+
(

N

m − 1

)
=
(

N + 1
m

)
. (2.262)
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Use this result to prove by induction the following result

(1 + x)N =
N∑

m=0

(
N

m

)
xm (2.263)

which is known as the binomial theorem, and which is valid for all real values of x.
Finally, show that the binomial distribution is normalized, so that

N∑
m=0

(
N

m

)
µm(1 − µ)N−m = 1 (2.264)

which can be done by first pulling out a factor (1 − µ)N out of the summation and
then making use of the binomial theorem.

2.4 (� �) Show that the mean of the binomial distribution is given by (2.11). To do this,
differentiate both sides of the normalization condition (2.264) with respect to µ and
then rearrange to obtain an expression for the mean of n. Similarly, by differentiating
(2.264) twice with respect to µ and making use of the result (2.11) for the mean of
the binomial distribution prove the result (2.12) for the variance of the binomial.

2.5 (� �) www In this exercise, we prove that the beta distribution, given by (2.13), is
correctly normalized, so that (2.14) holds. This is equivalent to showing that∫ 1

0

µa−1(1 − µ)b−1 dµ =
Γ(a)Γ(b)
Γ(a + b)

. (2.265)

From the definition (1.141) of the gamma function, we have

Γ(a)Γ(b) =
∫ ∞

0

exp(−x)xa−1 dx

∫ ∞

0

exp(−y)yb−1 dy. (2.266)

Use this expression to prove (2.265) as follows. First bring the integral over y inside
the integrand of the integral over x, next make the change of variable t = y + x
where x is fixed, then interchange the order of the x and t integrations, and finally
make the change of variable x = tµ where t is fixed.

2.6 (�) Make use of the result (2.265) to show that the mean, variance, and mode of the
beta distribution (2.13) are given respectively by

E[µ] =
a

a + b
(2.267)

var[µ] =
ab

(a + b)2(a + b + 1)
(2.268)

mode[µ] =
a − 1

a + b − 2
. (2.269)
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2.7 (� �) Consider a binomial random variable x given by (2.9), with prior distribution
for µ given by the beta distribution (2.13), and suppose we have observed m occur-
rences of x = 1 and l occurrences of x = 0. Show that the posterior mean value of x
lies between the prior mean and the maximum likelihood estimate for µ. To do this,
show that the posterior mean can be written as λ times the prior mean plus (1 − λ)
times the maximum likelihood estimate, where 0 � λ � 1. This illustrates the con-
cept of the posterior distribution being a compromise between the prior distribution
and the maximum likelihood solution.

2.8 (�) Consider two variables x and y with joint distribution p(x, y). Prove the follow-
ing two results

E[x] = Ey [Ex[x|y]] (2.270)

var[x] = Ey [varx[x|y]] + vary [Ex[x|y]] . (2.271)

Here Ex[x|y] denotes the expectation of x under the conditional distribution p(x|y),
with a similar notation for the conditional variance.

2.9 (� � �) www . In this exercise, we prove the normalization of the Dirichlet dis-
tribution (2.38) using induction. We have already shown in Exercise 2.5 that the
beta distribution, which is a special case of the Dirichlet for M = 2, is normalized.
We now assume that the Dirichlet distribution is normalized for M − 1 variables
and prove that it is normalized for M variables. To do this, consider the Dirichlet
distribution over M variables, and take account of the constraint

∑M
k=1 µk = 1 by

eliminating µM , so that the Dirichlet is written

pM (µ1, . . . , µM−1) = CM

M−1∏
k=1

µαk−1
k

(
1 −

M−1∑
j=1

µj

)αM−1

(2.272)

and our goal is to find an expression for CM . To do this, integrate over µM−1, taking
care over the limits of integration, and then make a change of variable so that this
integral has limits 0 and 1. By assuming the correct result for CM−1 and making use
of (2.265), derive the expression for CM .

2.10 (� �) Using the property Γ(x + 1) = xΓ(x) of the gamma function, derive the
following results for the mean, variance, and covariance of the Dirichlet distribution
given by (2.38)

E[µj ] =
αj

α0

(2.273)

var[µj ] =
αj(α0 − αj)
α2

0(α0 + 1)
(2.274)

cov[µjµl] = − αjαl

α2
0(α0 + 1)

, j 	= l (2.275)

where α0 is defined by (2.39).
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2.11 (�) www By expressing the expectation of lnµj under the Dirichlet distribution
(2.38) as a derivative with respect to αj , show that

E[lnµj ] = ψ(αj) − ψ(α0) (2.276)

where α0 is given by (2.39) and

ψ(a) ≡ d

da
ln Γ(a) (2.277)

is the digamma function.

2.12 (�) The uniform distribution for a continuous variable x is defined by

U(x|a, b) =
1

b − a
, a � x � b. (2.278)

Verify that this distribution is normalized, and find expressions for its mean and
variance.

2.13 (� �) Evaluate the Kullback-Leibler divergence (1.113) between two Gaussians
p(x) = N (x|µ,Σ) and q(x) = N (x|m,L).

2.14 (� �) www This exercise demonstrates that the multivariate distribution with max-
imum entropy, for a given covariance, is a Gaussian. The entropy of a distribution
p(x) is given by

H[x] = −
∫

p(x) ln p(x) dx. (2.279)

We wish to maximize H[x] over all distributions p(x) subject to the constraints that
p(x) be normalized and that it have a specific mean and covariance, so that∫

p(x) dx = 1 (2.280)∫
p(x)xdx = µ (2.281)∫
p(x)(x − µ)(x − µ)T dx = Σ. (2.282)

By performing a variational maximization of (2.279) and using Lagrange multipliers
to enforce the constraints (2.280), (2.281), and (2.282), show that the maximum
likelihood distribution is given by the Gaussian (2.43).

2.15 (� �) Show that the entropy of the multivariate Gaussian N (x|µ,Σ) is given by

H[x] =
1
2

ln |Σ| + D

2
(1 + ln(2π)) (2.283)

where D is the dimensionality of x.
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2.16 (� � �) www Consider two random variables x1 and x2 having Gaussian distri-
butions with means µ1, µ2 and precisions τ1, τ2 respectively. Derive an expression
for the differential entropy of the variable x = x1 + x2. To do this, first find the
distribution of x by using the relation

p(x) =
∫ ∞

−∞
p(x|x2)p(x2) dx2 (2.284)

and completing the square in the exponent. Then observe that this represents the
convolution of two Gaussian distributions, which itself will be Gaussian, and finally
make use of the result (1.110) for the entropy of the univariate Gaussian.

2.17 (�) www Consider the multivariate Gaussian distribution given by (2.43). By
writing the precision matrix (inverse covariance matrix) Σ−1 as the sum of a sym-
metric and an anti-symmetric matrix, show that the anti-symmetric term does not
appear in the exponent of the Gaussian, and hence that the precision matrix may be
taken to be symmetric without loss of generality. Because the inverse of a symmetric
matrix is also symmetric (see Exercise 2.22), it follows that the covariance matrix
may also be chosen to be symmetric without loss of generality.

2.18 (� � �) Consider a real, symmetric matrix Σ whose eigenvalue equation is given
by (2.45). By taking the complex conjugate of this equation and subtracting the
original equation, and then forming the inner product with eigenvector ui, show that
the eigenvalues λi are real. Similarly, use the symmetry property of Σ to show that
two eigenvectors ui and uj will be orthogonal provided λj 	= λi. Finally, show that
without loss of generality, the set of eigenvectors can be chosen to be orthonormal,
so that they satisfy (2.46), even if some of the eigenvalues are zero.

2.19 (� �) Show that a real, symmetric matrix Σ having the eigenvector equation (2.45)
can be expressed as an expansion in the eigenvectors, with coefficients given by the
eigenvalues, of the form (2.48). Similarly, show that the inverse matrix Σ−1 has a
representation of the form (2.49).

2.20 (� �) www A positive definite matrix Σ can be defined as one for which the
quadratic form

aTΣa (2.285)

is positive for any real value of the vector a. Show that a necessary and sufficient
condition for Σ to be positive definite is that all of the eigenvalues λi of Σ, defined
by (2.45), are positive.

2.21 (�) Show that a real, symmetric matrix of size D×D has D(D +1)/2 independent
parameters.

2.22 (�) www Show that the inverse of a symmetric matrix is itself symmetric.

2.23 (� �) By diagonalizing the coordinate system using the eigenvector expansion (2.45),
show that the volume contained within the hyperellipsoid corresponding to a constant
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Mahalanobis distance ∆ is given by

VD|Σ|1/2∆D (2.286)

where VD is the volume of the unit sphere in D dimensions, and the Mahalanobis
distance is defined by (2.44).

2.24 (� �) www Prove the identity (2.76) by multiplying both sides by the matrix(
A B
C D

)
(2.287)

and making use of the definition (2.77).

2.25 (� �) In Sections 2.3.1 and 2.3.2, we considered the conditional and marginal distri-
butions for a multivariate Gaussian. More generally, we can consider a partitioning
of the components of x into three groups xa, xb, and xc, with a corresponding par-
titioning of the mean vector µ and of the covariance matrix Σ in the form

µ =

(
µa

µb

µc

)
, Σ =

(
Σaa Σab Σac

Σba Σbb Σbc

Σca Σcb Σcc

)
. (2.288)

By making use of the results of Section 2.3, find an expression for the conditional
distribution p(xa|xb) in which xc has been marginalized out.

2.26 (� �) A very useful result from linear algebra is the Woodbury matrix inversion
formula given by

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1. (2.289)

By multiplying both sides by (A + BCD) prove the correctness of this result.

2.27 (�) Let x and z be two independent random vectors, so that p(x, z) = p(x)p(z).
Show that the mean of their sum y = x+z is given by the sum of the means of each
of the variable separately. Similarly, show that the covariance matrix of y is given by
the sum of the covariance matrices of x and z. Confirm that this result agrees with
that of Exercise 1.10.

2.28 (� � �) www Consider a joint distribution over the variable

z =
(

x
y

)
(2.290)

whose mean and covariance are given by (2.108) and (2.105) respectively. By mak-
ing use of the results (2.92) and (2.93) show that the marginal distribution p(x) is
given (2.99). Similarly, by making use of the results (2.81) and (2.82) show that the
conditional distribution p(y|x) is given by (2.100).
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2.29 (� �) Using the partitioned matrix inversion formula (2.76), show that the inverse of
the precision matrix (2.104) is given by the covariance matrix (2.105).

2.30 (�) By starting from (2.107) and making use of the result (2.105), verify the result
(2.108).

2.31 (� �) Consider two multidimensional random vectors x and z having Gaussian
distributions p(x) = N (x|µx,Σx) and p(z) = N (z|µz,Σz) respectively, together
with their sum y = x+z. Use the results (2.109) and (2.110) to find an expression for
the marginal distribution p(y) by considering the linear-Gaussian model comprising
the product of the marginal distribution p(x) and the conditional distribution p(y|x).

2.32 (� � �) www This exercise and the next provide practice at manipulating the
quadratic forms that arise in linear-Gaussian models, as well as giving an indepen-
dent check of results derived in the main text. Consider a joint distribution p(x,y)
defined by the marginal and conditional distributions given by (2.99) and (2.100).
By examining the quadratic form in the exponent of the joint distribution, and using
the technique of ‘completing the square’ discussed in Section 2.3, find expressions
for the mean and covariance of the marginal distribution p(y) in which the variable
x has been integrated out. To do this, make use of the Woodbury matrix inversion
formula (2.289). Verify that these results agree with (2.109) and (2.110) obtained
using the results of Chapter 2.

2.33 (� � �) Consider the same joint distribution as in Exercise 2.32, but now use the
technique of completing the square to find expressions for the mean and covariance
of the conditional distribution p(x|y). Again, verify that these agree with the corre-
sponding expressions (2.111) and (2.112).

2.34 (� �) www To find the maximum likelihood solution for the covariance matrix
of a multivariate Gaussian, we need to maximize the log likelihood function (2.118)
with respect to Σ, noting that the covariance matrix must be symmetric and positive
definite. Here we proceed by ignoring these constraints and doing a straightforward
maximization. Using the results (C.21), (C.26), and (C.28) from Appendix C, show
that the covariance matrix Σ that maximizes the log likelihood function (2.118) is
given by the sample covariance (2.122). We note that the final result is necessarily
symmetric and positive definite (provided the sample covariance is nonsingular).

2.35 (� �) Use the result (2.59) to prove (2.62). Now, using the results (2.59), and (2.62),
show that

E[xnxm] = µµT + InmΣ (2.291)

where xn denotes a data point sampled from a Gaussian distribution with mean µ
and covariance Σ, and Inm denotes the (n, m) element of the identity matrix. Hence
prove the result (2.124).

2.36 (� �) www Using an analogous procedure to that used to obtain (2.126), derive
an expression for the sequential estimation of the variance of a univariate Gaussian
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distribution, by starting with the maximum likelihood expression

σ2
ML =

1
N

N∑
n=1

(xn − µ)2. (2.292)

Verify that substituting the expression for a Gaussian distribution into the Robbins-
Monro sequential estimation formula (2.135) gives a result of the same form, and
hence obtain an expression for the corresponding coefficients aN .

2.37 (� �) Using an analogous procedure to that used to obtain (2.126), derive an ex-
pression for the sequential estimation of the covariance of a multivariate Gaussian
distribution, by starting with the maximum likelihood expression (2.122). Verify that
substituting the expression for a Gaussian distribution into the Robbins-Monro se-
quential estimation formula (2.135) gives a result of the same form, and hence obtain
an expression for the corresponding coefficients aN .

2.38 (�) Use the technique of completing the square for the quadratic form in the expo-
nent to derive the results (2.141) and (2.142).

2.39 (� �) Starting from the results (2.141) and (2.142) for the posterior distribution
of the mean of a Gaussian random variable, dissect out the contributions from the
first N − 1 data points and hence obtain expressions for the sequential update of
µN and σ2

N . Now derive the same results starting from the posterior distribution
p(µ|x1, . . . , xN−1) = N (µ|µN−1, σ

2
N−1) and multiplying by the likelihood func-

tion p(xN |µ) = N (xN |µ, σ2) and then completing the square and normalizing to
obtain the posterior distribution after N observations.

2.40 (� �) www Consider a D-dimensional Gaussian random variable x with distribu-
tion N (x|µ,Σ) in which the covariance Σ is known and for which we wish to infer
the mean µ from a set of observations X = {x1, . . . ,xN}. Given a prior distribution
p(µ) = N (µ|µ0,Σ0), find the corresponding posterior distribution p(µ|X).

2.41 (�) Use the definition of the gamma function (1.141) to show that the gamma dis-
tribution (2.146) is normalized.

2.42 (� �) Evaluate the mean, variance, and mode of the gamma distribution (2.146).

2.43 (�) The following distribution

p(x|σ2, q) =
q

2(2σ2)1/qΓ(1/q)
exp

(
−|x|q

2σ2

)
(2.293)

is a generalization of the univariate Gaussian distribution. Show that this distribution
is normalized so that ∫ ∞

−∞
p(x|σ2, q) dx = 1 (2.294)

and that it reduces to the Gaussian when q = 2. Consider a regression model in
which the target variable is given by t = y(x,w) + ε and ε is a random noise
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variable drawn from the distribution (2.293). Show that the log likelihood function
over w and σ2, for an observed data set of input vectors X = {x1, . . . ,xN} and
corresponding target variables t = (t1, . . . , tN )T, is given by

ln p(t|X,w, σ2) = − 1
2σ2

N∑
n=1

|y(xn,w) − tn|q − N

q
ln(2σ2) + const (2.295)

where ‘const’ denotes terms independent of both w and σ2. Note that, as a function
of w, this is the Lq error function considered in Section 1.5.5.

2.44 (� �) Consider a univariate Gaussian distribution N (x|µ, τ−1) having conjugate
Gaussian-gamma prior given by (2.154), and a data set x = {x1, . . . , xN} of i.i.d.
observations. Show that the posterior distribution is also a Gaussian-gamma distri-
bution of the same functional form as the prior, and write down expressions for the
parameters of this posterior distribution.

2.45 (�) Verify that the Wishart distribution defined by (2.155) is indeed a conjugate
prior for the precision matrix of a multivariate Gaussian.

2.46 (�) www Verify that evaluating the integral in (2.158) leads to the result (2.159).

2.47 (�) www Show that in the limit ν → ∞, the t-distribution (2.159) becomes a
Gaussian. Hint: ignore the normalization coefficient, and simply look at the depen-
dence on x.

2.48 (�) By following analogous steps to those used to derive the univariate Student’s
t-distribution (2.159), verify the result (2.162) for the multivariate form of the Stu-
dent’s t-distribution, by marginalizing over the variable η in (2.161). Using the
definition (2.161), show by exchanging integration variables that the multivariate
t-distribution is correctly normalized.

2.49 (� �) By using the definition (2.161) of the multivariate Student’s t-distribution as a
convolution of a Gaussian with a gamma distribution, verify the properties (2.164),
(2.165), and (2.166) for the multivariate t-distribution defined by (2.162).

2.50 (�) Show that in the limit ν → ∞, the multivariate Student’s t-distribution (2.162)
reduces to a Gaussian with mean µ and precision Λ.

2.51 (�) www The various trigonometric identities used in the discussion of periodic
variables in this chapter can be proven easily from the relation

exp(iA) = cos A + i sin A (2.296)

in which i is the square root of minus one. By considering the identity

exp(iA) exp(−iA) = 1 (2.297)

prove the result (2.177). Similarly, using the identity

cos(A − B) = 
 exp{i(A − B)} (2.298)
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where 
 denotes the real part, prove (2.178). Finally, by using sin(A − B) =
� exp{i(A − B)}, where � denotes the imaginary part, prove the result (2.183).

2.52 (� �) For large m, the von Mises distribution (2.179) becomes sharply peaked
around the mode θ0. By defining ξ = m1/2(θ − θ0) and making the Taylor ex-
pansion of the cosine function given by

cos α = 1 − α2

2
+ O(α4) (2.299)

show that as m → ∞, the von Mises distribution tends to a Gaussian.

2.53 (�) Using the trigonometric identity (2.183), show that solution of (2.182) for θ0 is
given by (2.184).

2.54 (�) By computing first and second derivatives of the von Mises distribution (2.179),
and using I0(m) > 0 for m > 0, show that the maximum of the distribution occurs
when θ = θ0 and that the minimum occurs when θ = θ0 + π (mod 2π).

2.55 (�) By making use of the result (2.168), together with (2.184) and the trigonometric
identity (2.178), show that the maximum likelihood solution mML for the concentra-
tion of the von Mises distribution satisfies A(mML) = r where r is the radius of the
mean of the observations viewed as unit vectors in the two-dimensional Euclidean
plane, as illustrated in Figure 2.17.

2.56 (� �) www Express the beta distribution (2.13), the gamma distribution (2.146),
and the von Mises distribution (2.179) as members of the exponential family (2.194)
and thereby identify their natural parameters.

2.57 (�) Verify that the multivariate Gaussian distribution can be cast in exponential
family form (2.194) and derive expressions for η, u(x), h(x) and g(η) analogous to
(2.220)–(2.223).

2.58 (�) The result (2.226) showed that the negative gradient of ln g(η) for the exponen-
tial family is given by the expectation of u(x). By taking the second derivatives of
(2.195), show that

−∇∇ ln g(η) = E[u(x)u(x)T] − E[u(x)]E[u(x)T] = cov[u(x)]. (2.300)

2.59 (�) By changing variables using y = x/σ, show that the density (2.236) will be
correctly normalized, provided f(x) is correctly normalized.

2.60 (� �) www Consider a histogram-like density model in which the space x is di-
vided into fixed regions for which the density p(x) takes the constant value hi over
the ith region, and that the volume of region i is denoted ∆i. Suppose we have a set
of N observations of x such that ni of these observations fall in region i. Using a
Lagrange multiplier to enforce the normalization constraint on the density, derive an
expression for the maximum likelihood estimator for the {hi}.

2.61 (�) Show that the K-nearest-neighbour density model defines an improper distribu-
tion whose integral over all space is divergent.


