Lecture 1

Introduction to the concepts of probability

If we were not ignorant there would be no probability, there could only be certainty. But
our ignorance cannot be absolute, for then there would be no longer any probability at
all. Thus the problems of probability may be classed according to the greater or less depth
of this ignorance.

H.Poincaré

What is a probability?
From latin probabilis, probare: that can be verified, that is reasonable to assume, that
can be proven.

Example: Can we predict whether the next toss of a coin will land on a head or on a
tail?

Two main intepretations:

e Objective (or physical) probability. We toss the coin 1000 times and count
how many times it lands on a tail. In this view probability is defined as:

# times we obtained a tail

Pleoin will land on a tail) = # times we tossed the coin

e Subjective probability. It reflects our degree of belief that a certain event might
occur.
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Figure 1 Probability as a measure of the degree of belief.

A few useful definitions

e An event ¢; is defined as any statement of which its truth can be verified, at least
in principle. FEz.: “There was a thunderstorm in Rome the day of the battle of
Trafalgar.”



e Sets are collections of events. Fz.: we roll a die and we want to know whether the
outcome will be an even A = {2,4,6} or an odd number B = {1,3,5}.

e A probability space is the collection of all events that can occur in our problem
S = {e1,es,...,en}. If we are about to toss a coin: S = {H,T}. This in an example
of discrete probability space.

e Empirical definition of probability: Corresponding to an event e; there is a defi-
nite number P(e;), called the probability of the event, whose intrinsic property is
that, as the number of trials (experiments) increases, the frequency of event e; is
approximated by P(e;).

Probability axioms

1. The probability sample space S must be well defined, as well as the set corresponding
to the impossible event: ()

2. Non-negativity: P(e;) >0 fori=1,...,N.
3. Normalization: P(S) = 1.

4. Take a collection of nonoverlapping sets A;(i = 1, ..., N). Then the probability of
the union of all sets is:

P(U;A;) = P(A1) + P(A3) + ... + P(Ay) = Y " P(A) (1)

i=1

A few properties that follow:

e For any set A C S we can define the complement A as the set of all events in S that
are not contained in A. It follows that:

P(A)=1-P(4) (2)
hence P(0) = 0.

e If two sets A and B are overlapping, i.e. they share one or more events, we can
write the joint probability as P(A N B) (or, equivalently, as P(A, B)), i.e. the
probability that an event is contained both in A and in B. FEz.: The probability
that a card is a four and is red, P(four N red) =2/52 =1/26. (There are two red
fours in a deck of 52, the 4 of hearts and the j of diamonds).

e The joint probability plays a role when we want to compute the probability of the
union of two overlapping sets, P(A U B). In fact it is easy to see that we cannot
just sum the probability of each set, but we need to subtract the joint probability
P(ANB):

P(AUB)=P(A)+ P(B) - P(ANB) (3)



e For an arbitrary (but finite) number of sets:
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this is called inclusion-exclusion principle.
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Figure 2 lllustration of the inclusion-exclusion principle for 3 sets.

The Bernoulli distribution

When we toss a coin we expect a head to appear with exactly the same probability as
a tail. More generally, the Bernoulli distribution describes a binary process where one
event (head, or “success”) occurs with probability p and the complementary event (tail,
or “failure”) occurs with probability (1 — p).
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Figure 3 The Bernoulli distribution.



Combinatorics

The Bernoulli distribution describes the probability of obtaining a head or a tail after one
toss. But what if we toss the coin three times, and we want to know the probability of
getting two heads and one tail (set A)? Let us list all the possible outcomes and count
those which contain two heads:

HHH HHT HTH, THH HTT, THT,TTH,TTT (4)
The probability of getting exactly two heads and one tail is then:

# of events with 2 heads and 1 tail 3
P(A) = =3 ()
# all events 8
hence, we must find a systematic way to count events; luckily, combinatorics comes to

our aid!

The binomial distribution - a simple model of spike generation

We consider the spiking pattern of a neuron in the interval [0, 7].We first divide 7" into N
small intervals (bins) #; of length At = L, so that there will be a maximum of one spike
per bin:

P(> 1 spike in At) «~ 0 (6)

We know that for this neuron the probability of observing a single spike within a given
bin is independent of the position of ¢;, and it is equal to ¢, and we are interested in
computing the probability of observing a certain number of spikes, k, distributed in N
bins. Let us examine the problem by listing the potential outcomes in Fig. 4.
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Figure 4

We notice two things: i) order is not important and ii) there is no replacement (since we



set to k the number of spikes we are interested in). Hence:

P(k spikes in N bins) = P(k bins with a spike) x P((N — k) empty bins) X
X (# of ways in which k spikes can occupy N bins) =

=" (1—g)"* (Z)

This probability distribution, that captures the odds of finding £ independent discrete
events (each occurring with probability ¢) in N “boxes”, is called the binomial distri-
bution.
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Figure 5 The binomial distribution.

Conditional probability and independence

Let us consider a (fictitious, of course!) neuron in the visual cortex (V1), that has been
recorded in two conditions: either in the light, for 70% of trials, or in the dark, for the
remaining 30% of trials. The probability that the neuron has emitted k spikes within a
trial while the animal was in the dark can be calculated as:

# trials with k spikes in the dark

#trials in the dark = P(k spikes | dark) (7)

_ P(k spikes , dark) (8)
- P(dark)

The formula for total probability

We are interested in calculating the probability that our neuron spiked twice, regardless of
whether the animal was in the dark or in the light. The concept of conditional probability
offers us a convenient way to think about this problem: looking at Fig. 6 it is easy to
convince ourselves that the probability of observing 2 spikes is equal to:

P(k=2)=Pk=2 N dark)UP(k=2 N light)



Figure 6 Venn diagram of the spike counts of an example neuron in V1.

we can thus invert 8 for each of the right hand terms, make use of the fact that the sets
are nonoverlapping (see Eq. 1) and write:

P(k=2)= P(k=2|dark)P(dark) + P(k = 2 | light) P(light)

this expression is called formula for total probability and can be easily extended to
the general case:

P(A) =) P(AB)P(B))

i=1

the only requirement being that { By, Bs, ..., By } is a complete set of disjoint (or mutually
exclusive) events.

Independence

It is interesting to notice that, in our example, when the neuron was recorded in the
light, it generated k& > 3 spikes more often than when in the dark. So if we were to plan
a new experiment where we would need the neuron to spike a lot, we would probably
put the animal in the light. In other words, we gained some amount of information by
conditioning the probability of spiking on whether it was dark or bright. This discussion
naturally brings us to the concept of independence: when conditioning over some event
does not make us gain any information about another event, then the two events are said
to be independent. More formally, if A and B are independent:

P(A|B) = P(A).
An alternative formulation makes use of Eq. 8 to write:

P(A,B) = P(A)P(B)



Aside from the case P(A|B) = P(B), there are two more cases to consider:

P(A|B) > P(A) — then A and B are positively correlated
P(A|B) < P(A) — then A and B are negatively correlated

If this seems unjustified, do not worry. We will talk more about correlation in the next
lecture.

Bayes’ rule

Let us go back to the relationship between joint and conditional probability in our example
of Fig. 6:

P(k =2,dark) = P(k =2 | dark)P(dark)
We could as well reverse the conditioning;:
P(k =2,dark) = P(dark | k =2)P(k = 2)
Hence, in general, we can write:
P(A,B) = P(A|B)P(B) = P(B|A)P(A)

from which follows that:

P(B]A)P(A)

This is known as Bayes’ rule, and it is a way to convert one conditional probability
P(A|B) into the other P(B|A), by reweighting it with the relative probability of the two
variables (the ratio P(A)/P(B)). So, why is this interesting?

If we interpret B as the data we currently have and A as a certain hypothesis we have
regarding how the data are generated, Bayes’ rule assumes an insightful form:

P(data | hypothesis) P(hypothesis)
P(data)

P(hypothesis | data) =

Bayes’ rule offers a recipe to update our belief regarding a certain hypothesis (or cause)
given the data we have. The probability that describes how likely our hypothesis is to be
true, given the observed data, P(hypothesis | data), is called posterior. P(hypothesis) is
called the prior probability, since it expresses our initial belief in that particular hypothe-
sis. P(data | hypothesis) is the likelihood (sometimes it can be referred to as a generative
model) of observing the data under our hypothesis. P(data) is the marginal probability,
and it more often than not only serves as a normalizing factor to keep our probability
bounded at 1. It is hard to calculate in general, but in many cases it can be dropped,
especially when we are only interested in comparing different posteriors.



Example: We recorded a neuron in the prefrontal cortex (PFC) of a rat. In some trials
the stimulus was a cat, in the remaining trials the stimulus was a dog. Suppose we know
the probabilities that the neuron emitted more or less than 5 spikes when it had seen a
cat or a dog:

We run the experiment for one more trial and find that the neuron spiked 8 times. Which
of the following sentences do you agree with most?

1. The rat saw a cat

2. We cannot say if the rat saw a cat or a dog, we are missing P(sp > 5) and P(sp < 5)

3. The rat saw a dog

4. We cannot say if the rat saw a cat or a dog, we are missing P(cat) and P(dog)

This example has taught us something very important:

Even when we know everything about how a cause (hypothesis) generates a certain re-
sponse, we cannot point to the most probable cause of an observed response if we do not
know how often that cause occurs!
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Figure 7 The power of priors.



Note: in the context of statistical models, i.e. linear regression, hypotheses are replaced
by a set of parameters, often called . In Bayesian regression not only is the variable
y generated from a probability distribution, but the model parameters 6 are assumed to
come from a distribution P(#) as well, and we can use Bayes’ rule to determine P(6|data):

P(data|0)P(6)

P(0|data) = P(data)

Ez.: linear regression

y=ar+b
0 ={a,b}




