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1 Understanding simple parameter estimation
procedures

1.a

Show that computing the maximum likelihood estimator is equivalent to com-
puting the maximum a posteriori estimator when the prior is flat (i.e. P (θ) =
P0).

1.b

Sometimes, the parameter estimate θ̂ may be chosen to minimize an objec-
tive function. Suppose that we have some cost C(θ̂, θ), associated with us-

ing/estimating a parameter θ̂ when the real, underlying parameter was θ. A
common choice for the objective function to minimize is the expectation value
of C,

< C(θ̂) >=

∫
P (θ|~x)C(θ̂, θ)dθ

where ~x is the observed data. If we take C(θ̂, θ) = (θ − θ̂)2, what parameter
estimate minimizes the objective function? What is the significance of this
quantity?

1.c

If we take C(θ̂, θ) = |θ − θ̂|, what parameter estimate minimizes the objective
function? What is the significance of this quantity?

1.d

Which cost function, C(θ̂, θ), yields an estimate corresponding to the MAP
estimator?
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2 Firing rate estimation of a Poisson neuron

Suppose a neuron spikes with an underlying rate, r, in response to some stim-
ulus, and we want to estimate this firing rate. If the stimulus presentation is
of length ∆t, and the neuron exhibits Poisson-like firing (a reasonable approxi-
mation for many neurons), then the total number of spikes observed during the
stimulus presentation should follow a Poisson distribution:

P (n|r) = e−r∆t (r∆t)
n

n!

Let N be the number of total measurements. It is convenient for much of this
analysis to let µ = r∆t be the average number of spikes during a stimulus
presentation.

2.a

Compute (analytically) the maximum likelihood estimator, r̂MLE . What is the
significance of this value?

2.b

Simulate this process using a Poisson random number generation a mean spike
number µ = 1. Compute and plot the full distribution, P (r|~n) under the
maximum-likelihood using N = 5, 20, 50 trials. How close are the ML esti-
mates to the true value? Consider running this with multiple seeds for the
random number generator to explore the variability across ’experiments’.

2.c

The width of the distribution demonstrates the degree of uncertainty in the pa-
rameter estimation (assuming the underlying model is correct). An interesting
quantity to examine is

I = − ∂2

∂r2
f(r;~n)

∣∣∣∣
r̂MLE

(In the case of a Gaussian likelihood function, convince yourself that this is
simply 1/σ2). If the likelihood is well-approximated by a Gaussian, then the
95% confidence interval for r is [r̂MLE−2/

√
I, r̂MLE +2/

√
I]. How does I scale

with N? You may want to use more sample sizes than just the three above
to make this scaling relationship convincing. Asymptotically, the slope of this
relationship is called the ”Fisher Information” and may be interpreted as the
expected amount of information each observation of the cell’s response provides
about its firing rate. BONUS: How does the Fisher Information depend on µ?
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2.d

One frequent model of neural population activity describes the distribution of
firing rates using a log-normal distribution,

P (r;m, s) =
1√

2πsr
exp

(
− (log(r)−m)

2

2s2

)

where log refers to the natural logarithm (base e), and m and s respectively
describe the mean and standard deviation of the Gaussian distribution P (log r).

Take ∆t = 1s, m = .3 and s = .9. How do MAP estimates using this prior
distribution compare to the ML estimates? How do the differences change with
the number of observations, N? Why? How does the prior’s influence depend
on the underlying firing rate of the neuron?

One common criticism of the Bayesian approach is that results of the analy-
sis can sometimes depend quite exquisitely on the form of the prior distribution,
which is an additional assumption of the analysis. If scientific conclusions de-
pend on this inference process, one common control is to show that the results
of the analysis hold across multiple different ’reasonable’ prior distributions.

3 Decoding activity from a neural population

Neurons in some brain areas have firing rates that are modulated by some con-
tinuously varying stimulus property (e.g. orientation of a grating in early visual
areas, frequency tuning in auditory areas, spatial location in hippocampus). To
model this activity, we denote the firing rates ri(x) for neuron i at location x.

3.a

If the neural activity is well described by a Poisson process and each neuron’s
activity is independent from one another (i.e. only conditionally dependent on
x), what is the probability of observing a population activity ~n = (n1, n2, ..., nN )
given that the animal is at location x?

3.b

Write down the log-likelihood function.

3.c

The result of b provides a simple form with some useful properties. Since we
are interested in extracting location information rather than a full probability
distribution, terms with no x dependence may be considered constants. The
remaining terms are a linear function of the number of spikes. If a new linear
neural unit were to respond in a manner such that its activity represents the
log-likelihood of being in location y, how strongly should it be connected to each
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neuron in this brain area? The simplicity of this form suggests the plausibility
of ML decoding in real neural systems.

3.d

(Real decoding using real data? Friday programming session?)

4 Interpreting a common machine learning cost
function

In many machine learning applications, there is a probability distribution of
data, p(xi), that a model distribution q(xi) is going to try to match.

4.a

Consider the significance of the quantity

log
p(xi)

q(xi)

What does it mean if this value is positive, negative or equal to zero?

4.b

The expectation value of this quantity across the data is called the Kullback-
Leibler divergence∑

i

p(xi) log
p(xi)

q(xi)
=
∑
i

p(xi) log p(xi)−
∑
i

p(xi) log q(xi)

It is most briefly expressed as on the left, but we will use the expression on the
right to understand its pieces.

Are each of these terms greater than or less than zero?

4.c

The term on the left is −H(p), where H(p) is called the entropy of p(xi). The
term on the right is called the cross-entropy, H(p, q). Show that the cross-
entropy is extremized (i.e. has a local maxima or minima) when q(xi) = p(xi).
Is this a maximum or a minimum? (Hint: since the model q(xi) is something
we may vary, but the data is fixed for us to model, you may consider each
q(xi) to be an independent variable and use Lagrange multipliers to enforce the
normalization constraint).
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4.d

Overall, we have shown that Kullback-Leibler divergence is generally a positive
quantity which becomes zero exactly when q(xi) = p(xi). In this sense, it is one
useful measure of how distinguishable different models are from the data.

In a machine learning context, because the data is given and all degrees
of freedom are in the model, minimizing KL-divergence is equivalent to mini-
mizing cross-entropy. Show that minimizing the cross-entropy is equivalent to
maximizing the likelihood of the data given the model.

(Hint: write down the full probability of observing the data, noting that if
N is the number of samples, the number of times xi was observed is N ×p(xi).)

5 German tank problem

In this problem, we will look into a scenario where the maximum likelihood esti-
mate gives a less than optimal results. The ’German tank problem’ historically
related to the problem of estimating the size of the German cavalry during the
second world war based on serial numbers from seized German tanks.

5.a

If there are N tanks produced and the serial numbers range from 1, ..., N , as-
suming each serial number is equally likely to be seen, what is the likelihood
function, P (k|N) after a single observation?

5.b

Which value of N maximizes the likelihood function when only a single tank is
observed?

Here, the mean number of tanks expected is not well defined, as the resulting
likelihood function cannot even be normalized. With more than one tank, the
problem does become more tractable. The full solution to this problem using
Bayesian analysis involves significantly more combinatorics (with more than one
observation, the likelihood function becomes more well-behaved). Analysis of
this problem was able to give Allied forces a more accurate estimate of the
number of tanks produced than intelligence estimates.
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